ECTS - Theory of Plasticity
Theory of Plasticity (ME667) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Theory of Plasticity | ME667 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | This course aims at a better understanding and formulation of plastic deformation of metals. It also discusses the role of microstructure and thermodynamics in plastic deformation. Different rules and models are discussed in details together with their mathematical representation including Maximum dissipation and normality rule, hardening rules, Non-associated flow rules. Slip line theory is discussed. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Vector and tensor calculus; general concepts about mechanics of materials - stress and strain concept; continuum deformation: displacement, strain and compatibility conditions; mechanics of continuous bodies: stress and stress equation of motion; elastic constitutive relations; inelastic constitutive relations; yield criteria, flow rules and hardening. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introductory Concepts in Plasticity | |
2 | On the role of microstructure and thermodynamics in plastic deformation | |
3 | Constitutive responses: elastic, viscoelastic, plastic, viscoplastic, anisotropy, etc. | |
4 | Rate dependent and rate independent plasticity | |
5 | Plastic strain, incremental strain, and hardening variables | |
6 | Yield criteria | |
7 | Maximum dissipation and normality rule (Associated flow rules) | |
8 | Hardening rules (isotropic and kinematic) | |
9 | Non-associated flow rules | |
10 | Uniqueness theorems and variational principles in plasticity | |
11 | Basic equations of plane strain and plane stress Slip lines and their properties | |
12 | Solution to several problems (such as indentation, necking, drawing, etc) | |
13 | The concept of plastic stability | |
14 | Dynamic plasticity |
Sources
Course Book | 1. Chakrabarty, Jagabanduhu. Theory of plasticity. Butterworth-Heinemann, 2012 |
---|---|
Other Sources | 2. Hill, Rodney. The mathematical theory of plasticity. Vol. 11. Oxford university press, 1998. Batdorf, So Bo, and Bernard Budiansky. "A mathematical theory of plasticity based on the concept of slip." (1949). |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 4 | 10 |
Homework Assignments | 4 | 20 |
Presentation | - | - |
Project | 1 | 20 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 11 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems . | X | ||||
2 | An ability to define and analyze issues related with manufacturing technologies. | X | ||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment. | X | ||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints. | X | ||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications. | X | ||||
6 | Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering. | X | ||||
7 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly. | X | ||||
8 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually. | X | ||||
9 | An ability to attain efficient communication skills in Turkish and English both verbally and orally. | X | ||||
10 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology. | X | ||||
11 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering. | X | ||||
12 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development. | X | ||||
13 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 4 | 4 | 16 |
Quizzes/Studio Critics | 3 | 3 | 9 |
Prepration of Midterm Exams/Midterm Jury | 1 | 20 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 107 |