ECTS - Advanced System Simulation

Advanced System Simulation (MDES650) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced System Simulation MDES650 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course intends to give a background of simulation for modeling complex engineering systems. The students are directed to practical work concerning their specific field of research based on this foundation.
Course Learning Outcomes The students who succeeded in this course;
  • To provide students a working knowledge of simulation theory and applications. To understand and apply advanced concepts of simulation to complex engineering problems. To emphasize the application areas of simulation.
Course Content Discrete simulation models for complex systems, input probability distributions, random variable generation, statistical inferences, variance reduction, continuous processes, verification and validation, advanced models.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction (definitions and types of simulations) Related pages of the other sources
2 Discrete simulation models and their mechanisms for complex systems Related pages of the other sources
3 Statistical methods for selecting input probability distributions, generating random variables Related pages of the other sources
4 Making statistical inferences from simulation results Related pages of the other sources
5 Variance reduction techniques, experimental design. Related pages of the other sources
6 Case study I Related pages of the other sources
7 Modeling continuous processes Related pages of the other sources
8 Modeling continuous processes Related pages of the other sources
9 Verification and validation of simulation models Related pages of the other sources
10 Case study II Related pages of the other sources
11 Multivariate data analysis-Time series analysis-Forecasting Related pages of the other sources
12 Advanced methods for simulation. Related pages of the other sources
13 Advanced methods for simulation Related pages of the other sources
14 Case study III-Future perspectives in simulation. Related pages of the other sources
15 Overall review -
16 Final exam -

Sources

Course Book 1. -
Other Sources 2. [1] Simulation Modeling and Analysis, 4Ed., Law, McGraw-Hill, New York, 2000.
3. [2] Kelton, D., R. Sadowski, and D. Sturrock, Simulation with Arena, McGraw-Hill, 3rd edition, 2003.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 8 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems .
2 An ability to define and analyze issues related with manufacturing technologies.
3 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment.
4 An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints.
5 An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications.
6 Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering.
7 An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly.
8 An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually. X
9 An ability to attain efficient communication skills in Turkish and English both verbally and orally.
10 An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology.
11 An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering.
12 An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development.
13 An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 1 2 2
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 8 32
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 4 8
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 132