ECTS - Mechanical Vibrations
Mechanical Vibrations (ME425) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Mechanical Vibrations | ME425 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
MECE204 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration. |
Course Lecturer(s) |
|
Course Objectives | 1) Identify the equivalent lumped parameter models of mechanical systems; 2) Derive the equation of motion using free-body-diagrams and energy methods; 3) Solve the vibrations of single and two-degrees of freedom systems; 4) Design for reduced vibrations; 5) Understand the Frequency Response Functions and modal analysis; 6) Simulate the systems using computation software. |
Course Learning Outcomes |
The students who succeeded in this course; |
Course Content | Temel tanımlar, tek serbestlik dereceli sistemler, titreşim yalıtımı, iki serbestlik dereceli sistemler: hareket denklemleri, koordinat dönüşümleri, temel koordinatlar, titreşim modları, torsiyonel titreşim, çoklu serbestlik dereceli sistemler, koordinat dönüşümler ve normal koordinatlar, modal analiz, harmonik zorlamalı sistemlerin çözümü. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Concepts of vibrations | |
2 | Lumped parameter systems | |
3 | Introduction to Matlab: Basics and essentials | |
4 | Response of undamped SDOF systems to initial excitations | |
5 | Response of damped SDOF systems to initial excitations | |
6 | Matlab : Effect of damping of SDOF systems and its measurement | |
7 | Response of SDOF systems to Harmonic and Periodic excitations | |
8 | Systems with rotating unbalanced mass and base vibrations, whirling of shafts. | |
9 | Matlab : Vibration isolation. | |
10 | Response of SDOF systems to nonperiodic excitations. | |
11 | Response of SDOF systems to arbitrary excitations. | |
12 | Matlab session: Convolution integral. | |
13 | 2-DOF systems: Equations of motion and free vibrations. | |
14 | 2-DOF systems: Modal analysis and response to harmonic excitations. | |
15 | Review before Final exam | |
16 | Review before Final exam |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 10 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 7 | 15 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 11 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems . | X | ||||
2 | An ability to define and analyze issues related with manufacturing technologies. | X | ||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment. | X | ||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints. | X | ||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications. | X | ||||
6 | Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering. | X | ||||
7 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly. | X | ||||
8 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually. | X | ||||
9 | An ability to attain efficient communication skills in Turkish and English both verbally and orally. | X | ||||
10 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology. | X | ||||
11 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering. | X | ||||
12 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development. | X | ||||
13 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 7 | 3 | 21 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 98 |