ECTS - Boundary Element Method Programming
Boundary Element Method Programming (MDES651) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Boundary Element Method Programming | MDES651 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The main objective of this course is to acquaint the students with the basic concepts about the programming principles of boundary element method. The students will learn the procedures in developing a boundary element formulation for specific engineering problems and with the obtain formulation; they will be able to program specific problems to solve given tasks. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Vector calculus; boundary value problems in mechanics; general outline of boundary element formulation; direct and indirect formulations; discretization-elements and integration; assembly and solution techniques; advanced techniques-dual reciprocity and multiple reciprocity, substructuring and boundary element-finite element coupling; parallel prog |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Mathematical introduction: Vector calculus and boundary value problems, numerical solution techniques of BVPs | Related pages of the textbook and other courses |
2 | Boundary element method formulations | Related pages of the textbook and other courses |
3 | Boundary element formulations – direct method | Related pages of the textbook and other courses |
4 | Boundary element formulations – indirect method | Related pages of the textbook and other courses |
5 | Several application problems: Laplace equation, linear Poisson equations, linear theory of elasticity | Related pages of the textbook and other courses |
6 | Discretization of the domain – element types | Related pages of the textbook and other courses |
7 | Discretization of the domain – integrations over elements | Related pages of the textbook and other courses |
8 | Near singular, weakly singular integrals and integrals containing higher singularities | Related pages of the textbook and other courses |
9 | Numerical evaluation of Cauchy principal value integrals and Hadamard Finite Part integrals | Related pages of the textbook and other courses |
10 | Assembly and solution | Related pages of the textbook and other courses |
11 | Pre- and post-processing of data | Related pages of the textbook and other courses |
12 | Alternative formulations; dual reciprocity, multiple reciprocity and domain decomposition techniques | Related pages of the textbook and other courses |
13 | Finite element – boundary element coupling | Related pages of the textbook and other courses |
14 | Parallel programming issues in boundary element method | Related pages of the textbook and other courses |
15 | Overall review | - |
16 | Final exam | - |
Sources
Course Book | 1. [1] Beer, G., Programming the boundary element method, John Wiley &Sons, (2001). |
---|---|
Other Sources | 2. [2] Gao, X. W., Davies, T. G., Boundary element programming in mechanics, Cambridge University Press, (2002). |
3. [3] Brebbia C. A., Domingues, J., Boundary elements, McGraw-Hill, (1992).. | |
4. [4] Wrobel, L.C., The boundary element method v.1 Applications in thermo-fluids and acoustics, John Wiley and Sons Inc., (2002) | |
5. [5] Aliabadi, M.H., The boundary element method v.2 Applications in solids and structures, John Wiley and Sons Inc., (2002) |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 5 | 40 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 13 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems | |||||
2 | An ability to define and analyze issues related with manufacturing technologies | |||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | |||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints | |||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications | |||||
6 | Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering | |||||
7 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly | |||||
8 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually | X | ||||
9 | An ability to attain efficient communication skills in Turkish and English both verbally and orally | |||||
10 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology | |||||
11 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering | |||||
12 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development | |||||
13 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 5 | 25 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 131 |