ECTS - Quality Control and Metrology
Quality Control and Metrology (MFGE577) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Quality Control and Metrology | MFGE577 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The subject of this course aims at equipping the students with a strong foundation in metrology and quality control concepts and skills so that they can perform the job of an inspector and help the industries to produce quality products. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Elementary metrology, linear-angular and comparative measurement, instruments and gauges for testing straightness, flatness, squareness, parallelism, limits, fits and gauges, inspection, quality function in industry, fundamentals of statistical concept in quality control, control charts in SQC, sampling inspection, operation characteristics (OC) cu |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Chapter 1: ELEMENTAL METROLOGY: Definition of metrology, Objective of metrology, Precision and accuracy, Accuracy and cost, Sources of errors, Concept of Repeatability, Sensitivity, Readibility and Reliability. | |
2 | Chapter 2: LINEAR MEASUREMENT: Introduction, Vernier Calipers - reading the vernier scale, Vernier micrometers (Description of various parts and their specification), Vernier Height Gauges, Depth gauges, Slip Gauges | |
3 | Chapter 3: ANGULAR MEASUREMENT: Introduction, Vernier and optical Bevel protractor, Sine Principle and Sine Bars, Optical Instruments for angular measurement, Angle Gauges, Calibration of angle gauges | |
4 | Chapter 4: COMPARATIVE MEASUREMENT: Comparators, Characteristics of Comparators, Uses of Comparators, Classification of Comparators, Advantages and disadvantages of mechanical, optical, electrical and pneumatic comparators, Working Principle of optical and pneumatic comparators | |
5 | Chapter 5: INSTRUMENTS AND GAUGES FOR TESTING STRAIGHTNESS, FLATNESS, SQUARENESS, PARALLELISM: Definition of straightness, flatness of surface, parallelism, Testing of straightness, flatness and parallelism, Measurement of circularity | |
6 | Chapter 6: LIMITS, FIT AND GAUGES: Introduction, Concept of Tolerances, Interchangeability, Terms associated with an assembly - basic size, normal size, limits, deviation and zero line, Methods of limit systems - hole basis and shaft basis. | |
7 | Chapter 7: INSPECTION: Introduction and Definition of Inspection, Principle of Inspection, Inspection Stages, Floor Inspection - advantages and disadvantages. | |
8 | Chapter 8: QUALITY FUNCTION IN INDUSTRY: Concept of Quality, Quality of design, conformance and performance, Concept of reliability and maintainability, Factors affecting quality, Quality circles - basic concept, purpose and functioning | |
9 | Chapter 9: FUNDAMENTALS OF STATISTICAL CONCEPT IN QUALITY CONTROL : Types of variations, Types of quality characteristics: variable, attribute and variable treated as attribute, Terminology used in frequency distribution, Graphical presentation of frequency distribution (Histogram, Frequency Bar Chart, Frequency Polygon), Normal distribution Curve - Description and its construction. | |
10 | Chapter 10: CONTROL CHARTS IN S.Q.C.: Introduction to X-R Chart, Steps required to construct X-R Chart, Analysis of X and R Chart, Concept of process capability, Control Charts for percent defective (p-chart), Application of p-chart, Introduction of c-chart, Construction of c-chart and its analysis. | |
11 | Chapter 10: CONTROL CHARTS IN S.Q.C.: Introduction to X-R Chart, Steps required to construct X-R Chart, Analysis of X and R Chart, Concept of process capability, Control Charts for percent defective (p-chart), Application of p-chart, Introduction of c-chart, Construction of c-chart and its analysis. | |
12 | Chapter 11: SAMPLING INSPECTION: Purpose of sampling inspection, Procedure of sampling inspection, Different types of sampling inspection, Advantages and Disadvantages of sampling, Application of sampling plan, Single sampling, Double sampling and Sequential sampling plan | |
13 | Chapter 11: SAMPLING INSPECTION: Purpose of sampling inspection, Procedure of sampling inspection, Different types of sampling inspection, Advantages and Disadvantages of sampling, Application of sampling plan, Single sampling, Double sampling and Sequential sampling plan | |
14 | Chapter 12: OPERATION CHARACTERISTICS (OC) CURVE: Definition and explanation of an OC Curve, Different parameter of OC Curves -(Producer's risk, consumer's risk, Acceptance Quality Level (AQL) etc, Zone of acceptance, rejection and indecision, Relationship between the parameters of OC-Curves. | |
15 | Final Examination Period | |
16 | Final Examination Period |
Sources
Course Book | 1. Engineering Metrology, Khanna Publishers. R.K. Jain. |
---|---|
Other Sources | 2. Quality Control, Tata McGraw Hill Publishing Ltd. TTTI Madras |
3. Industrial Organisation, Khanna Publishers, T.R. Banga |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 20 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 7 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply advanced knowledge in computational and/or manufacturing technologies to solve manufacturing engineering problems | X | ||||
2 | An ability to define and analyze issues related with manufacturing technologies | X | ||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | X | ||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints | X | ||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications | X | ||||
6 | Ability to perform scientific research and/or carry out innovative projects that are within the scope of manufacturing engineering | X | ||||
7 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly | X | ||||
8 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually | X | ||||
9 | An ability to attain efficient communication skills in Turkish and English both verbally and orally | X | ||||
10 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology | X | ||||
11 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering | X | ||||
12 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development | X | ||||
13 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | 16 | 2 | 32 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 5 | 80 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 4 | 12 | 48 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 191 |