ECTS - Linear Algebra
Linear Algebra (MATH275) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Linear Algebra | MATH275 | 3. Semester | 4 | 0 | 0 | 4 | 6 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | This course is designed to enrich the knowledge of engineering students in linear algebra, and to teach them the basics and application of the methods for the solution of linear systems occurring in engineering problems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Linear equations and matrices, real vector spaces, inner product spaces, linear transformations and matrices, determinants, eigenvalues and eigenvectors. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Systems of Linear Equations, Matrices, Matrix Multiplication, Algebraic Properties of Matrix Operations | pp. 1-39 |
2 | Special Types of Matrices and Partitioned Matrices, Echelon Form of a Matrix, Solving Linear Systems | pp. 42-49, 86-93, 95-103, 111-113 |
3 | Elementary Matrices; Finding Inverses, Equivalent Matrices | pp. 117-124, 126-129 |
4 | Determinants, Properties of Determinants, Cofactor Expansion | pp. 141-145, 146-154, 157-163 |
5 | Inverse of a Matrix (via Its Determinant), Other Applications of Determinants (Cramer’s Rule) | pp. 165-168, 169-172 |
6 | Vectors in the Plane and In 3-D Space, Vector Spaces, Subspaces | pp. 177-186, 188-196, 197-203 |
7 | Span, Linear Independence, Basis and Dimension | pp. 209-214, 216-226, 229-241 |
8 | Homogeneous Systems, Coordinates and Isomorphism, Rank of a Matrix | pp. 244-250, 253-266, 270-281 |
9 | Inner Product Spaces, Gram-Schmidt Process | pp. 290-296, 307-317, 320-329 |
10 | Orthogonal Complements, Linear Transformations and Matrices | pp. 332-343, 363-372 |
11 | Kernel and Range of a Linear Transformation | pp. 375-387 |
12 | Matrix of a Linear Transformation | pp. 389-397 |
13 | Eigenvalues and Eigenvectors | pp. 436-449 |
14 | Diagonalization and Similar Matrices, Diagonalization of Symmetric Matrices | pp. 453-461, 463-472 |
15 | General Review | |
16 | Final Exam |
Sources
Course Book | 1. Elementary Linear Algebra, B. Kolman and D.R. Hill, 9th Edition, Prentice Hall, New Jersey, 2008 |
---|---|
Other Sources | 2. Linear Algebra, S. H. Friedberg, A. J. Insel, L. E. Spence, Prentice Hall, New Jersey, 1979 |
3. Basic Linear Algebra, Cemal Koç, Matematik Vakfı Yay., Ankara, 1996 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. | X | ||||
2 | Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose. | |||||
4 | Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies. | |||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. | X | ||||
6 | Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills. | X | ||||
7 | Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself. | |||||
9 | Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications. | |||||
10 | Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development. | |||||
11 | Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions. | |||||
12 | Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy. | |||||
13 | Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 4 | 56 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 86 |