ECTS - Wind Energy Technologies
Wind Energy Technologies (ENE312) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Wind Energy Technologies | ENE312 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | To teach the fundamentals of wind and wave energy conversion systems. To introduce the basic design parameters in projecting wind turbines. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Wind characteristics, wind energy, wind turbines, design of wind turbines, projecting, planning and economy, wave energy and wave energy conversion systems. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Physics of Wind | Chapter 1 |
2 | Wind Energy and Power | Chapter 2 |
3 | Small Turbines | Chapter 3 |
4 | Utility Scale Turbines | Chapter 4 |
5 | Electrical Components of Turbines | Chapter 5 |
6 | Aerodynamics of Wind Turbine Blades | Chapter 6 |
7 | Project Sitting | Chapter 7 |
8 | Midterm Exam | |
9 | Wind Resource Assessment | Chapter 8 |
10 | Wind Speed and Direction Measurement | Chapter 9 |
11 | Assessment and Planning of Wind Projects | Chapter 10 |
12 | Installation and Commissioning of Wind Projects | Chapter 11 |
13 | Wind Energy Economics | Chapter 12 |
14 | Wave Energy | |
15 | Wave Energy Conversion Systems | |
16 | Final Exam |
Sources
Course Book | 1. Wind Energy Engineering, 1st Edition, Pramod Jain, 2011, Mc-Graw Hill |
---|---|
Other Sources | 2. Ocean Energy Tide and Tidal Power, Roger H. Charlier &Charles W. Finkl, Springer, 2009 |
3. Wave Energy Conversion, John Brooke, Elsevier Ocean Engineering Series Volume 6, 2003. | |
4. Wind Energy Renewable Energy and the Environment, Vaughn Nelson, Taylor& Francis, 2009 | |
5. Wind and Solar Power Systems: Design, Analysis, and Operation, Second Edition, Mukund R. Patel, Taylor Francis (2005) | |
6. Wind Energy Explained, Theory, Design and Application, J.F. Manwell, J.G. Mcgowan and A. Rogers, Wiley 2002 | |
7. Wind Energy, Fundamentals, Resource Analysis and Economics, Sathyajith Mathew, Springer-VBH, 2006. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 10 |
Presentation | - | - |
Project | 1 | 20 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 4 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. | |||||
2 | Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. | |||||
3 | Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose. | |||||
4 | Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies. | |||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. | |||||
6 | Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills. | |||||
7 | Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself. | |||||
9 | Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications. | |||||
10 | Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development. | |||||
11 | Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions. | |||||
12 | Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy. | |||||
13 | Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | 1 | 5 | 5 |
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 4 | 2 | 8 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 129 |