ECTS - Scientific Toy Design
Scientific Toy Design (HUM202) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Scientific Toy Design | HUM202 | General Elective | 3 | 0 | 0 | 3 | 4 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | Turkish |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | Using scientific concepts in toy design, providing students to reach scientific awareness, developing the skill of using tools for scientific toy design, introduction of scientific toy types. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Developing students' using tools and skills in workshops; visiting science museums and science centers, observing large-scale scientific toys, and displaying all designed and produced scientific toys. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Meeting, introduction of the course. | Preparing a presentation |
2 | What is a scientific toy? Where to use? Why should it be done and played? What is its place in the education system? Are scientific toys just for kids? Does it contribute to the development of science and to the future of societies? Presentations will be made in an interactive discussion environment. | Preparing a presentation |
3 | Optical Workshop. Introduction of Electromagnetic Wave Spectrum. Display of the visible light region. Description of light-proof, semi-transparent and fully transparent materials. History of glass and mirror. Mirror types. Uses of mirrors. | Preparing a presentation |
4 | Making a kaleidoscope. Making a periscope. | Supply of materials |
5 | Acoustic Workshop. What is sound? What are the features? What frequency sounds do we use when speaking? Harmful sounds to the human ear. How does sound spread in different materials? How is sound insulation done? What are the features of the microphone and speaker? | Preparing a presentation |
6 | Making a rain stick. | Supply of materials |
7 | Introducing Forces. Making the moving paper toys. | Preparing a presentation Supply of materials |
8 | Moving toys with clothes pegs will be made. | Supply of materials |
9 | Science Center technical trip. | |
10 | Electricity and magnetism. Dancing copper wire toys. | Preparing a presentation Supply of materials |
11 | LED toy making | Supply of materials |
12 | Information will be given about eco systems and ecological balance. Plant Terrarium. | Preparing a presentation Supply of materials |
13 | Completing the missing projects. | |
14 | Completing the missing projects. | |
15 | End of the Year Exhibition | |
16 | End of the Year Exhibition |
Sources
Course Book | 1. 1. Alan Bartholomew, Electric Gadgets and Gizmos, Kids Can Press. |
---|---|
2. 2. Neil Ardley, 101 Great Science Experiments, DK Publishing, İnc. | |
3. 3. Ed Sobey, Inventing Toys Kids Having Fun Learning Science, Zephyr Press. | |
4. Ed Sobey, The Way Toys Work, Chicago Review Press. | |
5. 5. Georgina Andrews ve Kate Knighton, 100 Bilimsel Deney, TÜBİTAK Popüler Bilim Kitapları. | |
6. 6. Domenico Laurenza, Leonardo’nun Makineleri, Pegasus Yayınları. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 10 |
Laboratory | - | - |
Application | 1 | 25 |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 10 |
Presentation | 1 | 5 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | - | - |
Final Exam/Final Jury | 1 | 50 |
Toplam | 5 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. | |||||
2 | Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. | |||||
3 | Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose. | |||||
4 | Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies. | |||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. | |||||
6 | Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills. | |||||
7 | Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself. | |||||
9 | Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications. | |||||
10 | Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development. | |||||
11 | Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions. | |||||
12 | Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy. | |||||
13 | Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | 14 | 3 | 42 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | 1 | 3 | 3 |
Project | |||
Report | |||
Homework Assignments | 1 | 3 | 3 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | |||
Prepration of Final Exams/Final Jury | 1 | 4 | 4 |
Total Workload | 100 |