ECTS - Logistics Management
Logistics Management (IE435) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Logistics Management | IE435 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Experiment, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The aim of this course is to emphasize the logistics, which has transformed from a classical transportation function into a strategic, interfunctional and global discipline, in industrial operations and services, and to explain the elements necessary for its successful management. In addition, to explain the basics, key activities, functions and new trends of logistics management and to increase students' analytical thinking and problem-solving skills in logistics management are other aims. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Terms and Concepts, Definition, History and Development of Logistics, Elements of Logistics, Basic Logistics Activities, Logistics Principles, Relationship with Supply Chain Management, Life Cycle and Cost, Transportation Management, Supply and Demand Management, Warehouse Management, Packaging, Information Technologies, Risks in Logistics Management and Sustainability, New Trends in Logistics |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Logistics Management | Gleissner: 2 & 3’rd Chapter, Lambert: 1’st Chapter |
2 | Relationship between Logistics Management and Supply Chain Management | Christopher: 1’st Chapter, Lambert: 14’th Chapter |
3 | Life Cycle and Life Cycle Cost | Christopher: 1 & 2’nd Chapter, Chopra: 3’rd Chapter |
4 | Fundamentals and Transportation Management (Surface and air) | Wood: 4-9’th Chapter, Lambert: 7’th Chapter, Chopra: 14’th Chapter, Christopher: 9‘th Chapter, Gleissner: 5’th Chapter |
5 | Fundamentals and Transportation Management (Sea and Multimodal) | Wood: 4-9’th Chapter, Lambert: 7’th Chapter, Chopra: 14’th Chapter, Christopher: 9‘th Chapter, Gleissner: 5’th Chapter |
6 | Supply and Demand Management | Wood: 15’th Chapter, Chopra: 7-9’th Chapter |
7 | Midterm | |
8 | Warehouse Design and Warehouse Management, Handling and Packaging | Wood: 15’th Chapter, Lambert: 8-9’th 15’th Chapter, Gleissner: 6’th 15’th Chapter |
9 | Information Technology in the Logistics | Gleissner: 9’th Chapter, Chopra: online Chapter |
10 | Performance Management and Increasing Performance | Lambert: 13’th Chapter, Gleissner: 6’th Chapter, Chopra: 3’rd Chapter |
11 | Risk Management in Logistics | Simchi-Levi: 13’th Chapter, Chopra: online chapter |
12 | Sustainability in Logistics | Chopra: 17’th Chapter, Christopher: 7’th Chapter, Simchi-Levi: 14’th Chapter |
13 | Trends in Logistics Management (Adverse Logistics, Green Logistics, Integrated 3PL Services) | Wood: 17’th Chapter, Lambert: 15’th Chapter, Jung: Part I, Christopher: 11’th Chapter, Chopra: 1-12 online chapter, Simchi-Levi: 17’th Chapter, Gleissner: 8’th Chapter |
14 | Trends in Logistics Management (Outsourcing, e-Commerce, RFID) | Wood: 17’th Chapter, Lambert: 15’th Chapter, Jung: Part I, Christopher: 11’th Chapter, Chopra: 1-12 online chapter, Simchi-Levi: 17’th Chapter, Gleissner: 8’th Chapter |
15 | Trends in Logistics Management (City Logistics, Humanitarian Logistics, New Tech (Autonomous Vehicles, 3D Printing, AI Applications, Cloud-Based Systems, Last-Mile Delivery, Blockchain Technology Integration)) | Wood: 17’th Chapter, Lambert: 15’th Chapter, Jung: Part I, Christopher: 11’th Chapter, Chopra: 1-12 online chapter, Simchi-Levi: 17’th Chapter, Gleissner: 8’th Chapter |
16 | Final Exam |
Sources
Course Book | 1. Chopra, S., Meindl, P., Supply Chain Management: Strategy, Planning and Operations, Pearson, 2016. |
---|---|
Other Sources | 2. Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E., Designing and Managing the Supply Chain: Concepts, Strategies, and Cases, McGraw-Hill, 2021. |
3. Lambert D.M., Stock J.R., Ellram Li.M., Fundamentals of Logistics Management, McGraw-Hill, 1998. | |
4. Donald F. Wood, Anthony Barone, Paul Murphy etc., International Logistics, Amacom, 2002. | |
5. Hosang Jung, F. Frank Chen, Bongju Jeong, Trends in Supply Chain: Design and Management Technologies and Method, Springer, 2007. | |
6. Martin Christopher, Logistics Supply Chain Management, Prentice Hall, 2011. | |
7. Harald Gleissner, J. Christian Femerling, Logistics Basics: Exercises, Case Studies, Springer, 2013. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. | |||||
2 | Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose. | |||||
4 | Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies. | X | ||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. | X | ||||
6 | Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills. | |||||
7 | Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself. | X | ||||
9 | Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications. | |||||
10 | Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development. | X | ||||
11 | Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions. | |||||
12 | Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy. | X | ||||
13 | Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 7 | 7 |
Prepration of Final Exams/Final Jury | 1 | 7 | 7 |
Total Workload | 125 |