Popular Science (HUM203) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Popular Science HUM203 General Elective 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Field Trip.
Course Coordinator
Course Lecturer(s)
  • Staff
Course Assistants
Course Objectives Students, • What is popular science? • What is theplace in theeducationsystem? • Who is thetarget of popular science? • Is there a contributiontothedevelopment of scienceandtothefuture of societies? • Whatdoesscientificthinkingmean? To make them have information.
Course Learning Outcomes The students who succeeded in this course;
  • Recognize scientists who are the milestones of science history.
  • A device used in everyday life has information about the past, present and future.
  • Improve presentation preparation skills.
  • Improve poster preparation skills.
Course Content Popular science description; the life of scientists; history of science and technology; visit to museums; poster preparation.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introducing the course Determination of presentation issues
2 Introducing what is popular science Experiencing a scientific concept of "being told in a way that everyone understands". Scientificconceptsto be explainedbystudents
3 Giving information about scientific thinking style Prepare the presentation
4 Brief summary of history of science and technology Prepare the presentation
5 Student presentations Prepare the presentation
6 Student presentations Prepare the presentation
7 Student presentations Prepare the presentation
8 Student presentations Prepare the presentation
9 Student presentations Prepare the presentation
10 Student presentations Prepare the presentation
11 Student presentations Prepare the presentation
12 Student presentations Prepare the presentation
13 MTA Natural Historyor RMK ScienceandTechnologyMuseumExcursion Trip program is done
14 Poster preparation techniques are explained Prepare the presentation
15 Poster Exhibition The hall is set Poster is prepared Announcement is made
16 Missing completes

Sources

Course Book 1. Kudret Emiroğlu, Gündelik Hayatımızın Tarihi, İş Kültür Yayınları
2. Bruno Nardini, Leonardo Da Vinci - Bir Ustanın Portresi, Can Yayınları.
3. Gale E. Christianson, Isaac Newton, TÜBİTAK Yayınları.
4. WalterIsaacson, Einstein-Yaşamı ve Evreni, Delidolu Yayınevi.
5. Marc J. Seifer, Bir Dahinin Biyografisi, Nikola Tesla, Geoturka Yayıncılık.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 15
Laboratory - -
Application - -
Field Work 1 5
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 2 40
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 15
Final Exam/Final Jury 1 25
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills.
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself. X
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship 1 3 3
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration 2 2 4
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 3 3
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 61