Japanese II (JAP202) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Japanese II JAP202 3 0 0 3 4
Pre-requisite Course(s)
JAP201
Course Language Spanish
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Distance
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Team/Group, Role Play.
Course Coordinator
Course Lecturer(s)
  • Instructor MDB Öğr.Gör.
Course Assistants
Course Objectives The general aim of the course is to provide students with basic Japanese language skills that will help them communicate at A1 level (Beginner Level) according to the European Union Language Criteria. This course is a continuation of the JAP201 course given in the first semester.
Course Learning Outcomes The students who succeeded in this course;
  • At the end of this course, the students Reading: • Can recognize hiragana, katakana, • find the main idea in short basic texts, • can read and understand question instructions. • Identify specific information in a basic level text,
  • Speaking: • be able tointroduce himself / herself and use basic greetings. • He can ask for a price, ask for something. • be able todescribe a day using past, present and future tenses. Can indicate place, time, means, and means in the narration. • Introducing family and relatives and giving simple information about them. • be able to order food and drink.
  • Listening: • find the basic idea in listening texts, • make determinations about the use and pronunciation of Japanese through listening,
  • Writing: • be able to complete dialogue and answer relevant questions, • write short texts for different purposes.
  • Technology use: • to take responsibility by doing the necessary technological activities on time
Course Content Vocabulary, structure and communicative skills at beginners level; various themes such as transport, travel, dates, holidays, money, shopping, plans, and life changes.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Orientation Course introduction Course introduction Course introduction
2 KANJI ALPHABET Course book, CD
3 Numbers and counting Course book, CD
4 TIME EXPRESSIONS Course book, CD, Visuals
5 Unit 13 – Revision and extra practice Unit 14 – Directions Practice book, Course book
6 Past adjectives negative and affirmative forms Course book, CD
7 MIDTERM
8 COMPARISON Course book, CD
9 Unit 13 11 verbs Kanji exercises .5 new kanji Course book, CD
10 Unit13 4 adjectives, Request verbs Exercises Course book, Flash Cards
11 Unit 14 – Verb conjugations ( Past, future, simple present) Course book, Flash Cards
12 Unit 14 – Verb conjugation (expressing requests) Making future plans Course book, Flash Cards
13 Unit 15 – Requests Course book, Flash Cards
14 Unit 15 – Exercises
15 Revision
16 FINAL EXAM

Sources

Course Book 1. Minna no Nihongo1: Surīē Nettowāku, Kabushiki Kaisha,Tokyo, 2012, International Japanese Language Institute.
Other Sources 2. Cd ve ek materyaller

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires sufficient knowledge in mathematics, natural sciences, and related engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields in solving complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; acquires the skill to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions, and applies modern design methods for this purpose.
4 Develops the skills to develop, select, and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in industrial engineering applications; gains the ability to effectively use information technologies.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
6 Acquires the ability to work effectively in intra-disciplinary and multidisciplinary teams, as well as individual work skills.
7 Acquires effective oral and written communication skills in Turkish; at least one foreign language proficiency; gains the ability to write effective reports, understand written reports, prepare design and production reports, make effective presentations, and give and receive clear instructions.
8 Develops awareness of the necessity of lifelong learning; gains the ability to access information, follow developments in science and technology, and continuously renew oneself. X
9 Acquires the consciousness of adhering to ethical principles, and gains professional and ethical responsibility awareness. Gains knowledge about the standards used in industrial engineering applications.
10 Gains knowledge about practices in the business life such as project management, risk management, and change management. Develops awareness about entrepreneurship and innovation. Gains knowledge about sustainable development.
11 Gains knowledge about the universal and social dimensions of the impacts of industrial engineering applications on health, environment, and safety, as well as the problems reflected in the engineering field of the era. Gains awareness of the legal consequences of engineering solutions.
12 Gains skills in the design, development, implementation, and improvement of integrated systems involving human, material, information, equipment, and energy.
13 Gains knowledge about appropriate analytical and experimental methods, as well as computational methods, for ensuring system integration.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 2 4
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 2 2
Prepration of Final Exams/Final Jury 1 4 4
Total Workload 100