ECTS - - Ph.D Program
Compulsory Departmental Courses
MDES600 - Research Methodology and Communication Skills (3 + 0) 5
Rigorous, scholarly research, particularly theses or dissertations. Literature review, surveys, meta-analysis, empirical research design, formulating research questions, theory building, qualitative and quantitative data collection and analysis methods, validity, reliability, triangulation, building evidences, writing research proposal
Elective Courses
ME612 - Nuclear Engineering II (3 + 0) 5
The course covers time dependent diffusion theory, multi-group diffusion theory, neutron transport theory, fusion cross sections, fission and fusion reactors, nuclear power plant operation. The objective of this course is to introduce time dependent diffusion theory, multi-group diffusion theory, neutron transport theory, fusion cross sections
ME621 - Advanced Fluid Mechanics (3 + 0) 5
This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy, equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow
ME625 - Computational Fluid Mechanics (3 + 0) 5
The formulation and application of numerical methods for solving fluid flow problems; classification of partial differential equations and formulation of well-posed problems; discrete approximation of partial differential equations: stability, consistency, and convergence; survey of methods for solving hyperbolic, elliptic, and parabolic problems.
ME635 - Numerical Methods in Heat Transfer (3 + 0) 5
The determination of the roots of equations numerically, solving nonlinear equation systems numerically, numerical integration, using finite difference methods for differential calculations, solving ordinary differential equations numerically, applying finite difference method to heat transfer applications, least squares method.
ME651 - Energy Sources and Sustainability (3 + 0) 5
The energy use in the view of sustainability, resource availability, technical performance, environmental effects, and economics; fossil fuels: coal, petroleum and natural gas; renewable energy sources: solar, wind, geothermal, tidal, biomass and hydro; nuclear power.
ME653 - Advanced Power Systems Analysis (3 + 0) 5
The definitions of stability in energy systems, simulation methods, swing equation, equal area criterion, mathematical model of synchronous machines, excitation and mechanical regulator models, multi-machine system modeling, numerical methods, and stability analysis of single and multi-machine systems.
ME654 - Advanced Topics in Energy Management (3 + 0) 5
The fundamental concepts in energy management, Turkey's energy status, energy audit methodology, engineering economics, energy modeling, relations between energy environment economics, energy saving and demand management applications, building HVAC systems and energy efficiency, energy efficiency in industry, renewable energies and energy efficiency.
ME661 - Theory of Continuous Media I (3 + 0) 5
Review of tensor analysis and integral theorems; kinematics of deformation, strain tensor, compatibility condition; material derivative, deformation rate, spin and vorticity tensor; external and internal loads, Cauchy?s principle and stress tensors; basic laws of continuum mechanics (conservation of mass, continuity equation, principle of linear a
ME662 - Theory of Continuous Media II (3 + 0) 5
Energy and virtual work equations, second law of thermodynamics, entropy, reversible and irreversible processes; theory of thermoelasticity, Gibbs relation; adiabatic and isothermal deformations; Clausius-Duhem inequality; constitutive equations, material symmetry restrictions; theory of viscoelasticity, theory of plasticity; applications.
ME667 - Theory of Plasticity (3 + 0) 5
Vector and tensor calculus; general concepts about mechanics of materials - stress and strain concept; continuum deformation: displacement, strain and compatibility conditions; mechanics of continuous bodies: stress and stress equation of motion; elastic constitutive relations; inelastic constitutive relations; yield criteria, flow rules and hardening.
ME669 - Theory of Metal Cutting (3 + 0) 5
Introduction; machine tools and machining operations; turning, drilling and milling, abrasive machining; mechanics of metal cutting; tool life and tool wear; economics of metal cutting operations; chip control; machine tool vibrations; grinding; manufacturing systems and automation; computer aided manufacturing.
ME671 - Advanced Tool Design (3 + 0) 5
Tool design; tool materials; cutting tool design; workholding principles; jig design; fixture design; power presses; metal cutting, forming and drawing; tool design for inspection and gauging; tool design for joining processes; modular and automated tool handling; the computer in tool design; geometric dimensioning and tolerancing.
ME672 - Sheet Metal Forming and Die Design (3 + 0) 5
Material properties, sheet deformation processes, deformation of sheet in plane stress, simplified stamping analysis, load instability and tearing, bending of sheet, simplified analysis of circular shells, cylindrical deep drawing, stretching of circular shells, combined bending and tension of sheets, hydroforming, introduction to finite element.
ME677 - Quality Control and Metrology (3 + 0) 5
Elementary metrology, linear-angular and comparative measurement, instruments and gauges for testing straightness, flatness, squareness, parallelism, limits, fits and gauges, inspection, quality function in industry, fundamentals of statistical concept in quality control, control charts in S.Q.C., sampling inspection, operation characteristics.
ME678 - Global Automotive Manufacturing (3 + 0) 5
Integration of core elements of both automotive design and manufacturing, developing depth in an engineering specialty, a breadth in engineering and knowledge of basic management issues, knowledge in the product development and manufacturing of automotive systems together with thorough understanding of the fundamentals of Automotive Engineering and Science.
ME679 - Optimization Applications in Manufacturing Systems (3 + 0) 5
Introduction to the nonlinear optimization and stochastic process modeling; mathematical fundamentals of nonlinear process optimization; structure optimization: topology, form and material; introduction to nonlinear finite elements; optimization of manufacturing systems with regard to tolerances and tool loadings; optimization of dynamical systems.
ME683 - Boundary Element Method (3 + 0) 5
Introduction; preliminary concepts: vector and tensor algebra, indicial notation; divergence theorem, Dirac delta function; singular integrals; Cauchy principal value integrals in 1 and 2D; boundary element formulation for Laplace equation; Laplace equation: discretization; boundary element formulation for elastostatics; elastostatics: discretization.