ECTS - Fuel Cell Technologies
Fuel Cell Technologies (ENE412) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Fuel Cell Technologies | ENE412 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(ENE203 veya CEAC203) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Question and Answer, Project Design/Management. |
Course Lecturer(s) |
|
Course Objectives | The course aims to provide deeper knowledge, a wider scope and improved understanding of theory, analysis, performance, design and the operational principles of various fuel cell components, systems, fuel processing and hydrogen infrastructure. To understand the current state of technology of stationary, automotive and portable fuel cell systems and components, and the challenges the industry faces today. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction: fuel cell operating principles,history,types,components and systems;fuel cell thermodynamics and electrochemistry:Nernst equation,Tafel equation,cell voltage,fuel cell efficiency and losses for operational fuel cell voltages;proton exchange membrane fuel cells:components and system, construction and performance, critical issues and recent developments;fuel cell stack design and calculations; hydrogen production, storage, safety and infrastructure; balance of fuel cell power plant |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Fuel Cell Technologies | |
2 | Fuel Cell Basic Chemistry and Thermodynamics | |
3 | Fuel Cell Basic Chemistry and Thermodynamics | |
4 | Fuel Cell Electrochemistry | |
5 | Fuel Cell Practice Studies | |
6 | Main PEM Fuel Cell Components and Materials Properties | |
7 | Midterm Exam | |
8 | PEM Fuel Cell Stack design | |
9 | PEM Fuel Cell Stack design | |
10 | Fuel Cell System Design | |
11 | Overview of Fuel Cell Types | Chapter 8 |
12 | Fuel Cell and Hydrogen Economy | |
13 | Term Project | |
14 | Term Project | |
15 | Term Project | |
16 | Final Exam |
Sources
Course Book | 1. PEM Fuel Cells: Theory and Practice, Frano Barbir, Elsevier Academic Press |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 25 |
Presentation | - | - |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 9 | 140 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge in mathematics and basic sciences and computational skills to solve manufacturing engineering problems | |||||
2 | An ability to define and analyze issues related with manufacturing technologies | |||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | |||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints | |||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications | |||||
6 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly | |||||
7 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually | |||||
8 | An ability to attain efficient communication skills in Turkish and English both verbally and orally | |||||
9 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology | |||||
10 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering | |||||
11 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development | |||||
12 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 3 | 3 | 9 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 130 |