ECTS - Heat Transfer
Heat Transfer (ENE301) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Heat Transfer | ENE301 | 5. Semester | 3 | 1 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
(ENE203 veya MATE203 veya MECE310) |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | •To introduce the basic principles of heat transfer •To present a wealth of real- world engineering examples to give students a feel for how heat transfer is applied in engineering practice •To develop an intuitive understanding of heat transfer by emphasizing the physics and physical arguments. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Basic concepts of heat transfer; mechanisms of heat transfer (conduction, convection, radiation). |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction and Basic Concepts | Chapter 1 |
2 | Heat Conduction Equation | Chapter 2 |
3 | Steady Heat Conduction | Chapter 3 |
4 | Transient Heat Conduction | Chapter 4 |
5 | Numerical Methods in Heat Conduction | Chapter 5 |
6 | Midterm Exam | |
7 | Fundamentals of Convection | Chapter 6 |
8 | External Forced Convection | Chapter 7 |
9 | Internal Forced Convection | Chapter 8 |
10 | Natural Convection | Chapter 9 |
11 | Boiling and Condensation | Chapter 10 |
12 | Midterm Exam | |
13 | Heat Exchangers | Chapter 11 |
14 | Fundamentals of Thermal Radiation | Chapter 12 |
15 | Radiation Heat Transfer | Chapter 13 |
16 | Final Exam |
Sources
Course Book | 1. Heat and Mass Transfer, Fundamentals and Applications. Yunus A. Çengel, Afshin J. Ghajar, Fifth Edition, Mc-Graw Hill (2015) |
---|---|
2. Incropera’s Principles of Heat and Mass Transfer. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, Global Edition, Wiley (2017) |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 15 | 15 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 19 | 120 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge in mathematics and basic sciences and computational skills to solve manufacturing engineering problems | X | ||||
2 | An ability to define and analyze issues related with manufacturing technologies | X | ||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | X | ||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints | X | ||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications | |||||
6 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly | X | ||||
7 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually | |||||
8 | An ability to attain efficient communication skills in Turkish and English both verbally and orally | |||||
9 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology | |||||
10 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering | |||||
11 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development | |||||
12 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 12 | 2 | 24 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 15 | 2 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 152 |