ECTS - Thermodynamics I
Thermodynamics I (ENE203) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Thermodynamics I | ENE203 | 3. Semester | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
MATH157 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To cover the basic principles of thermodynamics. To present real-world engineering examples to give students a feel for how thermodynamics is applied in engineering practice. To develop an intuitive understanding of thermodynamics by emphasizing the physics and physical arguments. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Basic concepts and definitions, properties of a pure substance, equations of state, work and heat interactions, first law of thermodynamics, internal energy and enthalpy, second law of thermodynamics, entropy, reversible and irreversible processes, thermodynamic analysis of processes, third law of thermodynamics. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction and Basic Concepts | Chapter 1 |
2 | Energy Conversion and General Energy Analysis | Chapter 2 |
3 | Properties of Pure Substances | Chapter 3 |
4 | Properties of Pure Substances | Chapter 3 |
5 | Energy Analysis of Closed Systems | Chapter 4 |
6 | Energy Analysis of Closed Systems | Chapter 4 |
7 | Mass and Energy Analysis of Control Volumes | Chapter 5 |
8 | Mass and Energy Analysis of Control Volumes | Chapter 5 |
9 | Midterm Exam | |
10 | The Second Law of Thermodynamics | Chapter 6 |
11 | The Second Law of Thermodynamics | Chapter 6 |
12 | Entropy | Chapter 7 |
13 | Entropy | Chapter 7 |
14 | Thermodynamic Property Relations | Chapter 12 |
15 | Thermodynamic Property Relations | Chapter 12 |
16 | Final Exam |
Sources
Course Book | 1. Thermodynamics: An Engineering Approach, Y.A. Çengel and M. A. Boles, 8th Ed.in SI Units, McGraw-Hill, 2015 |
---|---|
Other Sources | 2. • Fundamentals of Engineering Thermodynamics, C. Borgnakke and R.E.Sonntag, 8th Ed. SI Version, 2014. |
3. • Fundamentals of Engineering Thermodynamics, Michael J. Moran, Howard N. Shapiro, 5th Edition, John Wiley & Sons Inc., 2006 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge in mathematics and basic sciences and computational skills to solve manufacturing engineering problems | X | ||||
2 | An ability to define and analyze issues related with manufacturing technologies | X | ||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | X | ||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints | X | ||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications | |||||
6 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly | X | ||||
7 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually | |||||
8 | An ability to attain efficient communication skills in Turkish and English both verbally and orally | |||||
9 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology | |||||
10 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering | |||||
11 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development | |||||
12 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 6 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 151 |