ECTS - Nanofabrication
Nanofabrication (MFGE481) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Nanofabrication | MFGE481 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | This course aims to acquaint the students with new concepts for high rate synthesis and processing of nanostructures, fabrication methods for nanomaterials and devices, and assembling them into nanosystems and then into larger scale structures of relevance in industry and in the medical field. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fabrication of metallic nanomaterials, manufacturing of carbon based nanostructures, nanostructured systems from low-dimensional building blocks, characterization techniques and manufacturing methods, proximity effect. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Synthetic Approaches to Metallic Nanomaterials | Chapter 1 |
2 | Wet chemical preparations, electrochemical synthesis | Chapter 2 |
3 | Decomposition of Low-Valency Transition Metal Complexes, particle size separations | Chapter 3 |
4 | Structure of carbon nanomaterials, Fullerenes, carbon nanofibers, carbon nanotubes | Chapter 4 |
5 | Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD | Chapter 5 |
6 | Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD | Chapter 6 |
7 | Carbon based materials on biomedical applications, biosensors | Chapter 7 |
8 | Room temperature nano-imprint and nano-contact technologies | Chapter 8 |
9 | X-ray and electron beam lithography | Chapter 9 |
10 | X-ray and electron beam lithography | Chapter 10 |
11 | Nano machining | Chapter 11 |
12 | Bio-mimetic and bio-molecular recognition assembly, template assisted assembly, electric-field induced assembly, Langmuir-blodgett techniques, | Chapter 12 |
13 | Collagen structural hierarchy, Extracellular Matrix and Collagen Mimics in Tissue Engineering | Chapter 13 |
14 | Inorganic binding peptides via combinatorial biology | Chapter 14 |
15 | Nanomanufacturing processes using polymeric materials | Chapter 15 |
16 | Final | All chapters |
Sources
Course Book | 1. Nano the Essentials, T. Pradeep, McGraw Hill |
---|---|
Other Sources | 2. C. S. S. R. Kumar, J. Hormes, C. Leuschner, Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact, Wiley-VCH (2005) |
3. Mark J. Jackson, Micro and Nanomanufacturing, Springer, 2007 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 2 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 11 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge in mathematics and basic sciences and computational skills to solve manufacturing engineering problems | X | ||||
2 | An ability to define and analyze issues related with manufacturing technologies | X | ||||
3 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | X | ||||
4 | An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints | X | ||||
5 | An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications | X | ||||
6 | An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly | X | ||||
7 | An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually | X | ||||
8 | An ability to attain efficient communication skills in Turkish and English both verbally and orally | X | ||||
9 | An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology | X | ||||
10 | An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering | X | ||||
11 | An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development | X | ||||
12 | An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 4 | 64 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 2 | 15 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 2 | 2 |
Total Workload | 102 |