ECTS - Introduction to Distortion Engineering

Introduction to Distortion Engineering (MFGE434) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Distortion Engineering MFGE434 Area Elective 3 0 1 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Caner Şimşir
Course Assistants
Course Objectives This course aims to acquaint the students with "Distortion Engineering" which tries to solve distortion problem by a system-oriented approach. In contrast to classical methods, which try to eliminate distortion by production step base measures, "Distortion Engineering" considers the distortion as an attribute of whole manufacturing chain and optimizes the production by intelligent use of predictive and corrective methods.
Course Learning Outcomes The students who succeeded in this course;
  • Students will get acquainted with "Distortion Engineering" concept.
  • Students will cultivate understanding of distortion as a systems attribute.
  • Students will have understanding of the "Distortion Potential" and "Distortion Potential Carriers" such as asymmetries in the distributions of the alloying elements, mass, microstructure, residual stresses and texture.
  • Students will have hands-on-touch experience during laboratory sessions where residual stress measurements are conducted.
  • Students will cultivate understanding about the process chain design considering the evolution of distortion potentials.
Course Content Distortion, distortion potential, distortion potential carriers, compensation potential, production step based solutions, intelligent process chain design, predictive methods, use of in-situ measurement techniques and adaptive process control.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Distortion Engineering Chapter 1
2 Material Factors Affecting Distortion Chapter 2
3 Processing Factors Affecting Distortion Chapter 3
4 Distortion and Accumulation of Distortion Potentials during Mechanical Shaping Chapter 4
5 Distortion and Accumulation of Distortion Potentials during Machining Chapter 5
6 Distortion and Release of Distortion Potentials during Heating Chapter 6
7 Distortion and Release of Distortion Potential during Quenching Chapter 7
8 Distortion during Thermochemical Surface Treatments (Carburizing, Nitriding, Carbonitriding etc.) Chapter 8
9 Distortion during Thermal Surface Treatments (Induction, Laser, Flame Hardening) Chapter 9
10 Distortion during Welding/Joining Chapter 10
11 Predictive Methods for Process Chain Design Chapter 11
12 Adaptive Methods for the Control of Distortion Chapter 12
13 Case Study (I) Chapter 13
14 Case Study (II) Chapter 14
15 Final exam period All chapters
16 Final exam period All chapters

Sources

Course Book 1. Ders Notları
Other Sources 2. Zoch, H.W., Luebben,Th., Proceedings of 1st Conference on Distortion Engineering, Bremen, Germany, 2005
3. Zoch, H.W., Luebben,Th., Proceedings of 2nd Conference on Distortion Engineering, Bremen, Germany, 2008
4. Zoch, H.W., Luebben,Th., Proceedings of 3rd Conference on Distortion Engineering, Bremen, Germany, 2011
5. Totten, G.E., Howes. M., Inoue, T., Handbook of Residual Stress and Deformation of Steel, ASM International , ISNBN 0871707292, Ohio, 2002
6. Gür, C.H., Pan , J., Handbook of Thermal Process Simulation of Steels, CRC Press, Taylor & Francis Inc., ISBN 9780849350191, 2008
7. ] Liscic, B., Totten, G.E., Canale, L., Tensi, H., Quenching Theory and Technology 2nd Edition, CRC Press, Taylor & Francis Inc., ISBN 978-0-8493-9279-5, 2010

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 2 10
Homework Assignments 2 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 35
Toplam 9 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge in mathematics and basic sciences and computational skills to solve manufacturing engineering problems X
2 An ability to define and analyze issues related with manufacturing technologies X
3 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment X
4 An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints X
5 An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications X
6 An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly X
7 An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually X
8 An ability to attain efficient communication skills in Turkish and English both verbally and orally X
9 An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology X
10 An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering X
11 An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development X
12 An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 10 4 40
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 145