ECTS - Formal Languages and Automata

Formal Languages and Automata (CMPE326) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Formal Languages and Automata CMPE326 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CMPE251
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to provide the skills to appreciate and understand the formal definition of computation, and language. The students will be introduced to the definitions and properties of mathematical models of computation with automata theory.
Course Learning Outcomes The students who succeeded in this course;
  • Use finite automata as a tool to describe computing
  • Analyze grammars and languages as they are applied to computer languages
  • Construct Push-down automata as a parsing tool of compilation
  • Develop Turing machine models for computability
  • Build theoretical machines or models for hardware and software
Course Content Languages and their representations, finite automata and regular grammars, context-free grammars, concept of abstract machines and language acceptance, deterministic and non-deterministic finite state machines, pushdown automata, Turing machines and introduction to the theory of computation.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapters 0 (main text)
2 Regular Languages Chapter 1
3 Finite Automata Chapter 1.1
4 Nondeterminism Chapter 1.2
5 Finite Automata with Output (other sources 2)
6 Regular Expressions Chapter 1.3
7 Context-Free Languages Chapter 2
8 Context-Free Grammars Chapter 2.1
9 Chomsky Normal Form Chapter 2.1
10 Pushdown Automata Chapter 2.2
11 Equivalence with Context-Free Grammars Chapter 2.2
12 Computability Theory Chapter 3
13 Turing Machines Chapter 3.1
14 Variants of Turing Machines Chapter 3.2
15 Review
16 Review

Sources

Course Book 1. Introduction to the Theory of Computation, Michael Sipser, 2nd Edition, Thomson Course Technology, 2006.
Other Sources 2. Efim Kinber and Carl Smith, Theory of Computing: A Gentle Introduction",Prentice-Hall, 2001. ISBN # 0-13-027961-7.
3. Daniel I.A. Cohen, Introduction to Computer Theory (2nd Edition), Wiley, 1997, ISBN # 0-471-13772-3
4. Yarımağan, Ünal, “Özdevinirler Kuramı ve Biçimsel Diller”, Bıçaklar Kitabevi, 2003, ISBN# 975-8695-05-3
5. Martin, John C. “Introduction to Languages and the Theory of Computation”,(2nd Edition), McGraw-Hill International Editions, 1997, ISBN# 0-07-115468-X
6. Linz, Peter, “An Introduction to Formal Languages and Automata”, Jones and Bartlett Publishers, 2001.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 55
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has the ability to apply scientific knowledge gained in the undergraduate education and to expand and extend knowledge in the same or in a different area
2 Can apply gained knowledge and problem solving abilities in inter-disciplinary research
3 Has the ability to work independently within research area, to state the problem, to develop solution techniques, to solve the problem, to evaluate the obtained results and to apply them when necessary
4 Takes responsibility individually and as a team member to improve systematic approaches to produce solutions in unexpected complicated situations related to the area of study
5 Can develop strategies, implement plans and principles on the area of study and can evaluate obtained results within the framework
6 Can develop and extend the knowledge in the area and to use them with scientific, social and ethical responsibility
7 Has the ability to follow recent developments within the area of research, to support research with scientific arguments and data, to communicate the information on the area of expertise in a systematically by means of written report and oral/visual presentation
8 To have an oral and written communication ability in at least one of the common foreign languages ("European Language Portfolio Global Scale", Level B2)
9 Has software and hardware knowledge in the area of expertise, and has proficient information and communication technology knowledge
10 Follows scientific, cultural, and ethical criteria in collecting, interpreting and announcing data in the research area and has the ability to teach.
11 Has professional ethical consciousness and responsibility which takes into account the universal and social dimensions in the process of data collection, interpretation, implementation and declaration of results in mathematics and its applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 6 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 149