Applied Polymer Science (CEAC418) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Applied Polymer Science CEAC418 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Area Elective Courses (Group C)
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Experiment, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Salih Ertan
Course Assistants
Course Objectives The main purpose of the course is to provide students with a basic practical grounding in the principles and practices of polymer chemistry. This course also aims to develop advanced laboratory skills in polymer chemistry.
Course Learning Outcomes The students who succeeded in this course;
  • Enable to apply the fundamental principles of Polymer Chemistry.
  • Give a logically approach in polymer characterization.
  • Demonstrate an understanding of the application of and use of different instrumental methods of polymer analysis.
  • Make to gain practical applications of polymer synthesis methods.
  • Teach to classify the polymer types.
Course Content Primary classification of polymeric materials, synthesis of nylon 6-10 and nylon 6, synthesis of polystyrene, synthesis of pol (methylmetacrylate), synthesis of bakelite: the world?s first synthetic plastic, synthesis of polysulfide rubber, synthesis of linear and crosslinked polyesters, photopolymerization of methyl methacrylate, chemical polymeri

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Primary Classification of Polymeric Materials Lab Manual
2 Synthesis of Nylon 6/10 and Nylon 6 Lab Manual
3 Synthesis of Polystyrene Lab Manual
4 Synthesis of Polystyrene Lab Manual
5 Synthesis of Poly(methylmetacrylate) Lab Manual
6 Synthesis of Bakelite: The World’s First Synthetic Plastic Lab Manual
7 Synthesis of Bakelite: The World’s First Synthetic Plastic Lab Manual
8 MIDTERM
9 Synthesis of Polysulfide Rubber Lab Manual
10 Synthesis of Linear and Crosslinked Polyesters Lab Manual
11 Photopolymerization of Methyl Methacrylate Lab Manual
12 Chemical Polymerization of Aniline Lab Manual
13 Chemical Polymerization of Aniline Lab Manual
14 Synthesis of Polyurethane Foam Lab Manual
15 Make-up Lab Manual
16 FINAL EXAM

Sources

Course Book 1. Lab Kitapçığı (Lab Manual)
Other Sources 2. Textbook of Polymer Science. 3rd Ed., F. W. Billmayer, Wiley Publication, 1984.
3. Robert O. Ebewele. Polymer Science, CRC Press, 2000.
4. R. B. Seymour, Structure-Property Relationships in Polymers. Plenum Press, 1984.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 10 60
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 20
Toplam 12 100
Percentage of Semester Work 80
Percentage of Final Work 20
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems X
2 Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems
3 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose X
4 Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose X
5 Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively X
6 Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering X
7 Ability to work effectively in inter/inner disciplinary teams; ability to work individually X
8 Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions X
9 Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development X
10 Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications X
11 Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development X
12 Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 10 3 30
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 17 17
Prepration of Final Exams/Final Jury 1 23 23
Total Workload 150