ECTS - Corrosion and Oxidation of Metals

Corrosion and Oxidation of Metals (MATE440) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Corrosion and Oxidation of Metals MATE440 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Area Elective Courses (Group C)
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To teach the importance of corrosion To teach the thermodynamics and kinetics of corrosion and oxidation To introduce the types of corrosion To get students familiar with the corrosion of common engineering materials. To get students familiar with corrosion testing, monitoring and prevention methods. To teach students the corrosion related aspects of material selection and design
Course Learning Outcomes The students who succeeded in this course;
  • Understanding of the thermodynamics and kinetics of corrosion and oxidation.
  • Understanding the types of corrosion
  • Knowledge of corrosion testing, monitoring and prevention methods.
  • Knowledge of the corrosion related aspects of material selection and design.
Course Content Introduction to corrosion, thermodynamic and kinetic aspects of corrosion and oxidation, types of corrosion, corrosion in various environments, corrosion of engineering materials, corrosion testing, control and prevention methods, corrosion in material selection and design.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Corrosion 1-12
2 Basics of Electrochemistry 15-42
3 Thermodynamics of Corrosion 71-79
4 Potential-pH (Pourbaix diagrams) 80-94
5 Kinetic Aspects of Corrosion 95-118
6 Thermodynamics of Oxidation 119-128
7 Kinetic Aspects of Oxidation 129-135
8 Types of Corrosion-1 155-184
9 Types of Corrosion-2 155-184
10 Corrosion in Various Environments 193-217 of [1]
11 Corrosion of Steels and Stainless Steels 227-286
12 Corrosion of Non-ferrous Engineering Materials 287-308
13 Corrosion Testing and Control 219-234 of [1]
14 Methods of Corrosion Prevention 185-226
15 Corrosion in Material Selection and Design 237-266 of [1]
16 Final review and student project presentations

Sources

Course Book 1. Corrosion Science and Technology, D.Talbot and J.Talbot, CRC Press, 1997.
Other Sources 2. Corrosion and Protection, E.Bardal, Springer, 2003.
3. Corrosion Engineering, M.G.Fontana, McGraw-Hill, 1985.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 10
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems X
2 Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems X
3 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose X
4 Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose X
5 Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively X
6 Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering X
7 Ability to work effectively in inter/inner disciplinary teams; ability to work individually X
8 Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions X
9 Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development X
10 Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications X
11 Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development X
12 Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 3 4 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 126