ECTS - Numerical Methods for Engineers
Numerical Methods for Engineers (MATH380) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Numerical Methods for Engineers | MATH380 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(MATH275 veya MATH231) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Experiment, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This undergraduate course is designed for engineering students. The objective of this course is to introduce some numerical methods that can be used to solve mathematical problems arising in engineering that can not be solved analytically. The philosophy of this course is to teach engineering students how methods work so that they can construct their own computer programs. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Solution of nonlinear equations, solution of linear systems, eigenvalues and eigenvectors, interpolation and polynomial approximation, least square approximation, numerical differentiation, numerical integration. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 1. Preliminaries: Approximation, Truncation, Round-off errors in computations. | pp. 2 - 41 |
2 | 2. Solution of Nonlinear Equations 2.1. Fixed Point 2.2. Bracketing Methods for Locating a Root | pp. 41 - 51 |
3 | 2.3. Initial Approximation and Convergence Criteria 2.4. Newton-Raphson and Secant Methods | pp. 62 - 70 |
4 | 2.6. Iteration for Non-Linear Systems (Fixed Point for Systems) 2.7. Newton Methods for Systems | pp. 167 - 180 |
5 | 3. Solution of Linear Systems 3.3. Upper-Triangular Linear Systems (Lower-Triangular) 3.4. Gaussian Eliminatian and Pivoting | pp. 120 - 137 |
6 | 3.5. Triangular Factorization (LU) | pp. 141 - 153 |
7 | Midterm | |
8 | 3.7. Doğrusal sistemler için iteratif metotlar (Jacobi / Gauss Seidel Metotları) | pp. 156 - 165 |
9 | 11. Eigenvalues and Eigenvectors 11.2. Power Method (Inverse Power Method) | pp. 588 – 592 pp. 598 - 608 |
10 | 4. Interpolation and Polynomial Approximation 4.2. Introduction to Interpolation 4.3. Lagrange Approximation and Newton Approximation | pp. 199 - 228 |
11 | 5. Curve Fitting 5.1. Least-squares Line | pp. 252 - 259 |
12 | 5.3. Spline fonksiyonları ile interpolasyon | pp. 279 - 293 |
13 | 6. Numerical Differentiation 6.1. Approximating the Derivative 6.2. Numerical Differentiation Formulas | pp. 320 - 348 |
14 | 7. Numerical Integration 7.1. Introduction to Quadrature 7.2. Composite Trapezoidal and Simpson’s Rule | pp. 352 - 374 |
15 | Review | |
16 | Genel Sınav |
Sources
Course Book | 1. J. H. Mathews, K. D. Fink, Numerical Methods Using Matlab, 4th Edition, Prentice Hall, 2004. |
---|---|
Other Sources | 2. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd Edition, Mc Graw Hill Education, 2012. |
3. A. Gilat, V. Subramaniam, Numerical Methods for Engineers and Scientists: An introduction with Applications Using MATLAB, 3rd Edition, John Wiley & Sons, Inc. 2011. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 2 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 0 |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems | |||||
2 | Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems | |||||
3 | Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose | |||||
4 | Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose | |||||
5 | Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively | |||||
6 | Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering | |||||
7 | Ability to work effectively in inter/inner disciplinary teams; ability to work individually | |||||
8 | Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions | |||||
9 | Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development | |||||
10 | Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications | |||||
11 | Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development | |||||
12 | Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | 16 | 1 | 16 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 13 | 13 |
Total Workload | 77 |