Energy Politics (IR423) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy Politics IR423 General Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Observation Case Study.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Şükrü Sina Gürel
Course Assistants
Course Objectives The aim of the course is to provide information on global and regional energy topics.
Course Learning Outcomes The students who succeeded in this course;
  • To acquire knowledge on global and regional energy issues
  • To learn energy geopolitics and energy security
  • To understand the Turkish energy policy and politics
Course Content Global and regional energy topics; energy sources; energy geopolitics and energy security; Turkish energy policy and politics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction None
2 Energy and Energy Sources Sevim(2012), Chapter 1
3 Energy and International Relations Sevim(2012), Chapter 1
4 Energy Scenarios 1 Sevim(2012), Chapter 2
5 Energy Scenarios 2 Sevim(2012), Chapter 2
6 Energy Security Sevim(2012), Chapter 3
7 Midterm Exam None
8 Russian Energy Politics Sevim(2012), Chapter 3
9 European Energy Politics Sevim(2012), Chapter 3
10 American Energy Politics Sevim(2012), Chapter 3
11 Energy Policy of China Sevim(2012), Chapter 4
12 Energy Policy of Iran Sevim(2012), Chapter 4
13 Energy Policy of Saudi Arabia Sevim(2012), Chapter 4
14 Energy Policies of Turkey Sevim (2012), Chapter 4
15 Discussion on the Final Exam and Conclusion None
16 Final Exam None

Sources

Course Book 1. Sevim, (2012), Küresel Enerji Stratejileri ve Jeopolitik, Seçkin Yayınları

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 30
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems
2 Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems
3 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose
4 Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose
5 Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively
6 Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering
7 Ability to work effectively in inter/inner disciplinary teams; ability to work individually
8 Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions
9 Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development
10 Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications
11 Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development
12 Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125