ECTS - Introduction to Distortion Engineering
Introduction to Distortion Engineering (MFGE434) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Distortion Engineering | MFGE434 | Area Elective | 3 | 0 | 1 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Drill and Practice, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | This course aims to acquaint the students with "Distortion Engineering" which tries to solve distortion problem by a system-oriented approach. In contrast to classical methods, which try to eliminate distortion by production step base measures, "Distortion Engineering" considers the distortion as an attribute of whole manufacturing chain and optimizes the production by intelligent use of predictive and corrective methods. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Distortion, distortion potential, distortion potential carriers, compensation potential, production step based solutions, intelligent process chain design, predictive methods, use of in-situ measurement techniques and adaptive process control. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Distortion Engineering | Chapter 1 |
2 | Material Factors Affecting Distortion | Chapter 2 |
3 | Processing Factors Affecting Distortion | Chapter 3 |
4 | Distortion and Accumulation of Distortion Potentials during Mechanical Shaping | Chapter 4 |
5 | Distortion and Accumulation of Distortion Potentials during Machining | Chapter 5 |
6 | Distortion and Release of Distortion Potentials during Heating | Chapter 6 |
7 | Distortion and Release of Distortion Potential during Quenching | Chapter 7 |
8 | Distortion during Thermochemical Surface Treatments (Carburizing, Nitriding, Carbonitriding etc.) | Chapter 8 |
9 | Distortion during Thermal Surface Treatments (Induction, Laser, Flame Hardening) | Chapter 9 |
10 | Distortion during Welding/Joining | Chapter 10 |
11 | Predictive Methods for Process Chain Design | Chapter 11 |
12 | Adaptive Methods for the Control of Distortion | Chapter 12 |
13 | Case Study (I) | Chapter 13 |
14 | Case Study (II) | Chapter 14 |
15 | Final exam period | All chapters |
16 | Final exam period | All chapters |
Sources
Course Book | 1. Ders Notları |
---|---|
Other Sources | 2. Zoch, H.W., Luebben,Th., Proceedings of 1st Conference on Distortion Engineering, Bremen, Germany, 2005 |
3. Zoch, H.W., Luebben,Th., Proceedings of 2nd Conference on Distortion Engineering, Bremen, Germany, 2008 | |
4. Zoch, H.W., Luebben,Th., Proceedings of 3rd Conference on Distortion Engineering, Bremen, Germany, 2011 | |
5. Totten, G.E., Howes. M., Inoue, T., Handbook of Residual Stress and Deformation of Steel, ASM International , ISNBN 0871707292, Ohio, 2002 | |
6. Gür, C.H., Pan , J., Handbook of Thermal Process Simulation of Steels, CRC Press, Taylor & Francis Inc., ISBN 9780849350191, 2008 | |
7. ] Liscic, B., Totten, G.E., Canale, L., Tensi, H., Quenching Theory and Technology 2nd Edition, CRC Press, Taylor & Francis Inc., ISBN 978-0-8493-9279-5, 2010 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | 1 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 2 | 10 |
Homework Assignments | 2 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 9 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems | X | ||||
2 | Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems | X | ||||
3 | Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose | X | ||||
4 | Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose | X | ||||
5 | Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively | X | ||||
6 | Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering | X | ||||
7 | Ability to work effectively in inter/inner disciplinary teams; ability to work individually | X | ||||
8 | Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions | X | ||||
9 | Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development | X | ||||
10 | Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications | X | ||||
11 | Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development | X | ||||
12 | Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 10 | 4 | 40 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
Total Workload | 145 |