ECTS - Automotive Manufacturing Processes Using Lightweight Metals
Automotive Manufacturing Processes Using Lightweight Metals (AE411) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Automotive Manufacturing Processes Using Lightweight Metals | AE411 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
MATE207 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The objective of the course is to introduce the developed materials in automotive sector, to provide the basic knowledge needed to explore the application of these new materials in automobile field, and to develop knowledge in recent trends in manufacturing techniques of automobile components. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Advanced lightweight metals and manufacturing processes for automotive applications; metallurgy of lightweight automotive metals; engineering joining processes for metals; design for manufacturing using lightweight automotive metals. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to the concept of lightweighting in Automotive Engineering I | Lecture notes and presentations on Moodle website |
2 | Introduction to the concept of lightweighting in Automotive Engineering II | Lecture notes and presentations on Moodle website |
3 | The traditional manufacturing Processes (such as Machining, Bulk Forming, Casting, Forging, etc.) | Lecture notes and presentations on Moodle website |
4 | Manufacturing Technologies Aluminum such as Foam, Extrusion, Hydroforming, Roll-forming, Molding and 3D Printing | Lecture notes and presentations on Moodle website |
5 | Advanced lightweight metals and manufacturing processes for automotive applications (AHSS, Advance High Strength Steels) | Lecture notes and presentations on Moodle website |
6 | Advanced lightweight metals and manufacturing processes for automotive applications (Aluminum and alloys) | Lecture notes and presentations on Moodle website |
7 | Midterm I and Term project activities | |
8 | Advanced lightweight metals and manufacturing processes for automotive applications (Magnesium and alloys) | Lecture notes and presentations on Moodle website |
9 | Engineering metal Joining technology (Types, design method, mechanical performance, application, joining processes) | Lecture notes and presentations on Moodle website |
10 | The Metallurgical terms used in Mechanics of Metals (Resilience and toughness, Rigidity and Stiffness, Stiffness and Weight Ratio, stress, strain, etc.) | Lecture notes and presentations on Moodle website |
11 | Design for manufacturing using Lightweight Automotive Metals, Aluminum and alloys | Lecture notes and presentations on Moodle website |
12 | Design for manufacturing using Lightweight Automotive Metals, Magnesium and alloys | Lecture notes and presentations on Moodle website |
13 | Design for manufacturing using Lightweight Automotive Metals, AHSS | Lecture notes and presentations on Moodle website |
14 | Presentations of term projects |
Sources
Course Book | 1. Materials, design and manufacturing for lightweight vehicles, Prof. P. K. Mallick, Woodhead Publishing/CRC Press, 2010. |
---|---|
Other Sources | 2. Automotive Engineering: Lightweight, Functional, and Novel Materials, Brian Cantor, P. Grant, C. Johnston, February 19, 2008, ISBN 9780750310017. |
3. Lightweight Composite Structures in Transport, Design, Manufacturing, Analysis and Performance, by James Njuguna, 29th January 2016, eBook ISBN: 9781782423430,ü Hardcover ISBN: 9781782423256. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 1 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 10 | 10 |
Presentation | 1 | 15 |
Project | 1 | 15 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 15 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the Materials Engineering; the ability to apply theoretical and practical knowledge of these areas to solve complex engineering problems and to model and solve of materials systems | X | ||||
2 | Understanding of science and engineering principles related to the structures, properties, processing and performance of Materials systems | |||||
3 | Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose | |||||
4 | Ability to design and choose proper materials for a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design and materials selection methods for this purpose | |||||
5 | Ability to develop, select and utilize modern techniques and tools essential for the analysis and solution of complex problems in Materails Engineering applications; the ability to utilize information technologies effectively | X | ||||
6 | Ability to design and conduct experiments, collect data, analyse and interpret results using statistical and computational methods for complex engineering problems or research topics specific to Materials Engineering | |||||
7 | Ability to work effectively in inter/inner disciplinary teams; ability to work individually | |||||
8 | Effective oral and written communication skills in Turkish; knowlegde of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions | |||||
9 | Recognition of the need for lifelong learning; the ability to access information; follow recent developments in science and technology with continuous self-development | X | ||||
10 | Ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of standards used in engineering applications | |||||
11 | Knowledge on business practices such as project management, risk management and change management; awareness in entrepreneurship and innovativeness; knowledge of sustainable development | |||||
12 | Knowledge of the effects of Materials Engineering applications on the universal and social dimensions of health, environment and safety, knowledge of modern age problems reflected on engineering; awareness of legal consequences of engineering solutions |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 2 | 28 |
Laboratory | |||
Application | 14 | 2 | 28 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | 1 | 10 | 10 |
Project | 1 | 20 | 20 |
Report | |||
Homework Assignments | 10 | 2 | 20 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 124 |