ECTS - Energy Storage Technology
Energy Storage Technology (ENE415) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Energy Storage Technology | ENE415 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | Identify, analyze and compare new technologies for storing renewable energy sources in stationary and mobile applications. Understand the operating principles in mechanical, thermal and electrochemical energy storage technologies and how to apply the engineering fundamentals to design and implement them. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Basic concepts and definitions, energy storage systems and types, chemical energy storage, batteries and battery types, thermal energy storage methods, thermal energy storage and solar energy, sensible thermal energy storage, latent thermal energy storage, phase change materials, stratification in sensible heat storage systems, modeling of latent h |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Basic Concepts and Definitions | |
2 | Energy Storage Systems | |
3 | Genel Termodinamik | |
4 | Mechanical Energy Storage | |
5 | Mechanical Energy Storage | |
6 | Thermal energy storage | |
7 | Solar Energy and Thermal Energy Storage | |
8 | Thermochemical Energy Storage | |
9 | Midterm Exam | |
10 | Electrochemical Energy Storage | |
11 | Electrochemical Energy Storage | |
12 | Batteries | |
13 | Hydrogen | |
14 | Fuel Cells and Electrolyzers | |
15 | Supercapacitors | |
16 | Fİnal Exam |
Sources
Course Book | 1. Rufer Alfred. Energy Storage: Systems and Components. Taylor & Francis. 2017. |
---|---|
2. Huggins Robert Alan. Energy Storage. Springer 2010. | |
3. Thermal Energy Storage, İbrahim Dinçer, Marc, A. Rosen, 2nd Edition, John Wiley & Sons, 2010. | |
Other Sources | 4. Design Guide for Cool Thermal Storage, Charles E. Dorgan, James S. Elleson, ASHRAE, 1993. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 10 |
Presentation | 2 | 20 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 25 |
Toplam | 11 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline. | X | ||||
6 | The ability to work effectively in inter/inner disciplinary teams, the ability to work individually. | |||||
7 | a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology. | |||||
9 | a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 12 | 2 | 24 |
Presentation/Seminar Prepration | 2 | 10 | 20 |
Project | |||
Report | |||
Homework Assignments | 5 | 3 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 5 | 5 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 127 |