ECTS - Modeling, Analysis and Simulation

Modeling, Analysis and Simulation (ENE303) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Modeling, Analysis and Simulation ENE303 5. Semester 3 1 0 3 5
Pre-requisite Course(s)
PHYS101 ve PHYS102
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Question and Answer, Drill and Practice, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Hüseyin OYMAK
Course Assistants
Course Objectives The main objective of this course is to provide an introductory treatment of dynamic systems suitable for all engineering students regardless of discipline. Particularly, this course aims to present a detailed treatment of modeling mechanical and electrical systems, by demonstrating the ways of obtaining analytical and computer solutions at an introductory level.
Course Learning Outcomes The students who succeeded in this course;
  • identify the variables, recognize the elements, and recall the interconnection laws in modeling a translational, rotational, or an electrical system
  • construct modeling equations, the input-output equation, or the state-variable model for a translational, rotational, or an electrical system
  • construct the matrix formulation of the state-variable equations of a system
  • draw a block diagram from the differential equations of a system
  • implement a block diagram to the SIMULINK part of MATLAB
  • apply Laplace transform method for analytical solutions of linear models
  • recognize a first order system, and construct and analyze its solution
Course Content Translational mechanical systems, state-variable equations, inputoutput equations, matrix formulation, block diagrams and computer simulation, rotational mechanical systems, electrical systems, Laplace transform solutions of linear models.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1
2 Translational Mechanical Systems – Part I Chapter 2
3 Translational Mechanical Systems – Part II Chapter 2
4 Standard Forms for System Models – Part I Chapter 3
5 Standard Forms for System Models – Part II Chapter 3
6 First Midterm Examination
7 Block Diagrams and Computer Simulation – Part I Chapter 4
8 Block Diagrams and Computer Simulation – Part II Chapter 4
9 Rotational Mechanical Systems – Part I Chapter 5
10 Rotational Mechanical Systems – Part II Chapter 5
11 Second Midterm Examination
12 Electrical Systems – Part I Chapter 6
13 Electrical Systems – Part II Chapter 6
14 Transform Solutions of Linear Models – Part I, Part II Chapter 7
15 Transform Solutions of Linear Models – Part III Chapter 7
16 Final Exam

Sources

Course Book 1. Modeling and Analysis of Dynamic Systems, 3rd Edition, by C.M. Close, D.K. Frederick, J.C. Newell, Wiley.
Other Sources 2. MATLAB 2023a veya 2023b, Atılım Üniversitesi lisansıyla.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 45
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams, the ability to work individually.
7 a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
9 a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications.
10 Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 2 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 126