ECTS - Electromechanical Energy Conversion
Electromechanical Energy Conversion (EE352) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Electromechanical Energy Conversion | EE352 | 6. Semester | 3 | 2 | 0 | 4 | 6 |
Pre-requisite Course(s) |
---|
(EE210 veya EE234 veya AEE202) |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Experiment, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | • To remember basics of electromagnetic field theory. • To learn modelling magnetic circuits and their solution. Learn concepts of inductance and stored energy. • To learn properties of magnetic materials and their characteristics. To understand AC excitation and core loss concepts. • To learn transformer operating principle, ideal transformer, single phase transformer, equivalent circuit, efficiency and regulation concepts. To under understand the operating principle of 3-phase transformers. • Per unit system. • To learn electromechanical energy conversion principle, co-energy and force production concepts. • To learn the concept of rotating field and induced emf onceepts. • To learn operating principle of 3-phase induction motors, their equivalent circuit, power flow and testing. • To learn starting asynchronous machines and their speed control methods. • To understand the operation principle of synchronous machines, their equivalent circuit and characteristics. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Electric machinery fundamentals, magnetic circuits and materials, electromechanical energy conversion principles, transformers: the ideal transformer, practical transformers, special transformers, three-phase transformers; DC Machines; DC generators, DC motors, DC motor starters, variable speed control of DC motors, synchronous machines: synchrono |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | • Introduction to the course. Why electrical machines? Principles of electromagnetics, magnetic circuits, inductance. | Please, review last week lecture notes and read Chapter 1 of your book. |
2 | • Excitation by AC current, magnetic loss, introduction to transformers. | Please, review last week lecture notes and glance Chapter 1 and 2 from your book. |
3 | • Stored energy in magnetic field, magnetic materials, examples. | Please, review last week lecture notes and continue to read Chapter 1 of your book. |
4 | • Ideal transformer, transformer equivalent circuit. Transformer tests, examples. | Please, review last week lecture notes and continue to read Chapter 2 of your book. |
5 | • Three-phase transformers, examples. | Review last week lecture notes and continue to read Chapter 2 of your book. |
6 | Per Unit System. Examples. | Read section 2.6 of your book. |
7 | • Energy conversion. Energy, co-energy, force. | Read Chapter 3 of Fitzgerald-Kinsley. |
8 | • Rotating field concept. Induced voltage. | Read Chapter 4 of your book. |
9 | • Structure of an induction machine. Induction machine equivalent circuit. | Read Chapter 7 of your book. |
10 | • Induction motor parameters, locked rotor test, no load test. Examples. | Read Chapter 7 of your book. |
11 | • Induction motor torque-speed characteristics. | Please, review last week lecture notes and glance this week’s topics from the lecture notes |
12 | • Power flow, starting, speed control. | Read Chapter 7 of your book. |
13 | • Synchronous machines, equivalent circuit. | Read Chapter 5 of your book. |
14 | Final examination period. | Review of topics. |
15 | Final examination period. | Review of topics. |
Sources
Course Book | 1. Electric Machinery Fundamentals, Stephen J. Chapman, fifth Edition, McGraw-Hıll International Edition |
---|---|
2. Electric Machinery and Transformers Bhag S. Guru, Hüseyin R. Hızıroğlu, Oxford |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 15 | 5 |
Laboratory | 5 | 20 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 6 | 5 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 44 |
Final Exam/Final Jury | 1 | 26 |
Toplam | 29 | 100 |
Percentage of Semester Work | 84 |
---|---|
Percentage of Final Work | 16 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively. | |||||
5 | The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline. | X | ||||
6 | The ability to work effectively in inter/inner disciplinary teams, the ability to work individually. | X | ||||
7 | a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology. | |||||
9 | a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | 5 | 2 | 10 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 6 | 3 | 18 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 153 |