ECTS - Energy Management
Energy Management (ENE406) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Energy Management | ENE406 | 8. Semester | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
EE352 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | The fundamental goal of energy management is to produce goods and provide services with the least cost and least environmental effect. The objective of Energy Management is to achieve and maintain optimum energy procurement and utilisation, throughout the organization and: • To minimise energy costs / waste without affecting production & quality • To minimise environmental effects. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Definition, energy audit-need,types of energy audit, energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Energy Management | Chapter 1 |
2 | Energy Audit Process | Chapter 2 |
3 | Understanding Energy Bill | Chapter 3 |
4 | Energy Analysis and Life Cycle Costing | Chapter 4 |
5 | Lighting and Compensation | Chapter 5 |
6 | HVAC Systems | Chapter 6 |
7 | Management Boilers | Chapter 7 |
8 | Midterm Exam | |
9 | Steam Distribution Systems | Chapter 8 |
10 | Control System and Computers | Chapter 9 |
11 | Energy Systems Maintaince | Chapter 10 |
12 | Insulation | Chapter 11 |
13 | Process Energy Management | Chapter 12 |
14 | Renewable Energy Sources and Water Management | Chapter 13 |
15 | Distributed Generation | Chapter 14 |
16 | Final Exam |
Sources
Course Book | 1. Energy Management Handbook, Sixth Edition, Wayne C. Turner Steve Doty , ISBN:0-88173-542-6, 2016 |
---|---|
Other Sources | 2. Guide to Energy Management, Fifth Edition 2014, Barney L. Capehart ,Wayne C. Turner and William J. Kennedy, ISBN 0-8493-3699-9. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 45 |
Final Exam/Final Jury | 1 | 50 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams, the ability to work individually. | |||||
7 | a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology. | |||||
9 | a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 5 | 80 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 148 |