ECTS - Rapid Prototyping
Rapid Prototyping (MFGE405) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Rapid Prototyping | MFGE405 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | Participants will study topics fundamental to rapid prototyping and automated fabrication, including the generation of suitable CAD models, current rapid prototyping fabrication technologies, their underlying material science, the use of secondary processing, and the impact of these technologies on society. The rapid prototyping process will be illustrated by the actual design and fabrication of a part. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Rapid prototyping technologies, CAD models suitable for automated fabrication, secondary processing, additive manufacturing technologies, stereolithography, fused deposition modeling, laminated object manufacturing, selective laser sintering, direct metal laser sintering, casting processes for rapid prototyping, investment casting, rapid tooling, reverse engineering. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Overview of rapid prototyping and automated fabrication technologies • What is a prototype? • Why make a prototype? • What is automated fabrication? • History of numerical control • Process planning; manual, variant, generative | Chapter 1 |
2 | Introduction to injection molding • Introduction to injection molding • Design for injection molding • Selecting materials • UL standards | Chapter 2 |
3 | Rapid prototyping technologies • Machine tool motion • History of layered manufacturing • Stereolithography • Solid ground curing • Selective laser sintering • Fused deposition modeling • Laminated object manufacturing • Other systems | Chapter 3 |
4 | Rapid prototyping technologies • Machine tool motion • History of layered manufacturing • Stereolithography • Solid ground curing • Selective laser sintering • Fused deposition modeling • Laminated object manufacturing • Other systems | Chapter 4 |
5 | The underlying material science • Photopolymers • Thermoplastics • Powders | Chapter 5 |
6 | The underlying material science • Photopolymers • Thermoplastics • Powders | Chapter 6 |
7 | Generating CAD models suitable for automated fabrication • The .STL file format • Repairing CAD models • Adding support structures • Model slicing | Chapter 7 |
8 | Generating CAD models suitable for automated fabrication • The .STL file format • Repairing CAD models • Adding support structures • Model slicing | Chapter 8 |
9 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 7 |
10 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 8 |
11 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 11 |
12 | Secondary processing • RTV silicone rubber molds • Investment casting • Improving the quality of prototyping • Improving the productivity in manufacturing • Medical applications | Chapter 12 |
13 | The future • Remote manufacturing on demand • Ongoing research activities • How can these technologies be improved? | Chapter 13 |
14 | The future • Remote manufacturing on demand • Ongoing research activities • How can these technologies be improved? | Chapter 14 |
15 | Final exam period | All chapters |
16 | Final exam period | All chapters |
Sources
Course Book | 1. Rafiq Noorani, Rapid Prototyping: Principles and Applications, John Wiley & Sons, Inc., 2006, ISBN 0-471-73001-7 |
---|---|
Other Sources | 2. Ian Gibson (ed.), Advanced Manufacturing Technology for Medical Applications, John Wiley & Sons, Ltd., 2005, ISBN 0-470-01688-4 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 15 |
Laboratory | 1 | 25 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 6 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 25 |
Toplam | 15 | 100 |
Percentage of Semester Work | 75 |
---|---|
Percentage of Final Work | 25 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | |||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively. | |||||
5 | The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams, the ability to work individually. | |||||
7 | a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. | |||||
8 | Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology. | |||||
9 | a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications. | |||||
10 | Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 6 | 3 | 18 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 2 | 4 |
Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
Total Workload | 137 |