ECTS - Research Methodology and Communication Skills

Research Methodology and Communication Skills (MDES600) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Research Methodology and Communication Skills MDES600 1. Semester 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Compulsory Departmental Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Observation Case Study, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to improve the research and communication skills of students early in their graduate program to help them better plan, conduct and present their research and thesis work.
Course Learning Outcomes The students who succeeded in this course;
  • The students will become familiar with the stages of systematic research and related tools.
  • The students will be able to conduct effective literature surveys and prepare taxonomy reports.
  • The students will be informed about the general principles of data gathering and management.
  • The students will gain hands-on experience on formulating and writing a research/thesis proposal.
  • The students will improve their verbal and written communication skills.
  • The students will better appreciate the importance of ethics in research.
Course Content Rigorous, scholarly research, particularly theses or dissertations. Literature review, surveys, meta-analysis, empirical research design, formulating research questions, theory building, qualitative and quantitative data collection and analysis methods, validity, reliability, triangulation, building evidences, writing research proposal

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction; What is Research? Why to do research? Lecture Notes
2 Identification of a research problem Lecture Notes
3 Managing and Planning Research Lecture Notes
4 Literature mining, taxonomy Lecture Notes
5 Data gathering and data management Lecture Notes
6 Technical Writing Lecture Notes
7 Writing a research/thesis proposal Lecture Notes
8 Ethics in Research Lecture Notes
9 Communication Skills Lecture Notes
10 Scientists must speak Lecture Notes
11 How to present Lecture Notes
12 Student Presentations
13 Student Presentations
14 Student Presentations
15 Student Presentations
16 Student Presentations

Sources

Other Sources 1. Robert L. Peters. Farrar, Straus and Giroux, Getting What You Came For: The Smart Student's Guide to Earning a Master's or Ph.D. (Revised Edition), 1997.
2. Zina O’Leary, The Essential Guide to Doing Research, Sage Publications, London, 2004.
3. Bruce A. Thyer, Preparing Research Articles, Oxford University Press, London, 2008.
4. Paul Oliver, The Student’s Guide to Research Ethics, Open University Press, Philadelphia, 2003.
5. James E. Mauch and Namgi Park, Guide to the Successful Thesis and Dissertation: A Handbook for Students and Faculty, 5th Ed., Marcel Dekker, Inc., New York, 2003.
6. D. Eric Walters and Gale Climenson Walters, Scientists Must Speak, Rutledge, London, 2002.
7. Owen Hargie (Ed.), The Handbook of Communication Skills, 3rd Ed., Rutledge, London, 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application 1 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation 3 20
Project - -
Report - -
Seminar 1 30
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 8 100
Percentage of Semester Work 100
Percentage of Final Work 0
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively. X
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies. X
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines. X
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written. X
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation. X
9 Be conscious on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself. X
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions. X
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism. X
14 A competency on developing strategy, policy and application plans on the mechatronics engineering and evaluating the results in the context of qualitative processes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 1 40 40
Special Course Internship 1 30 30
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration 2 15 30
Project
Report
Homework Assignments 3 10 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 178