ECTS - Introduction to Manufacturing Processes

Introduction to Manufacturing Processes (MFGE205) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Manufacturing Processes MFGE205 4. Semester 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Field Trip.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih Şengönül
Course Assistants
Course Objectives This course aims to acquaint the students with principles, concepts and techniques that are essential in manufacturing processes in a wide range of industrial applications.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of manufacturing systems
  • Students will get acquainted with mechanical and physical properties of materials and their effects on the processing conditions
  • Students will have understanding of shape forming processes and the selection of the best manufacturing process for particular application from both technical and economical perspective
  • Students will have hands-on-touch experience during the machine-shop hour about machine tools, metal removal and finishing processes, casting, rolling and hardness measurement.
  • Students will cultivate understanding about the capabilities and limitations of manufacturing processes, and relationship among technical and economic factors involved in manufacturing
Course Content Mechanical and physical properties of materials, metal casting, mechanical deformation processes (bulk and sheet forming), machining and joining operations, powder metallurgy, non traditional processes, micro and nano fabrication technologies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Manufacturing Processes Chapter 1
2 Mechanical Properties of Materials and their characterization Chapter 2
3 Mechanical Properties of Materials and their characterization Chapter 3
4 Mechanical Properties-processing relationship and Flow curves Chapter 4
5 Hot Forming Processes and change in mechanical properties Chapter 5
6 Metal Casting Chapter 6
7 Bulk Metal Forming Processes, Forging Chapter 7
8 Bulk Metal Forming Processes, Rolling Chapter 8
9 Bulk metal Forming Processes, Extrusion and wire drawing Chapter 9
10 Special Experiment on Casting of Al, rolling of cast Al and subsequent hardness measurements Chapter 10
11 Sheet Metal Forming Processes Chapter 11
12 Sheet Metal Forming Processes Chapter 12
13 Machining Processes Chapter 13
14 Machining Processes Chapter 14
15 Joining processes Chapter 15
16 Powder Metallurgy Chapter 16

Sources

Course Book 2. Mikell P. Groover, Fundamentals of Modern Manufacturing, Materials, Processes and Systems.
6. Principles of Metal Manufacturing Processes, by J. Beddoes, M.J. Bibby, Arnold Publishers, (1999)
Other Sources 3. Introduction to Manufacturing Processes, by John A. Schey, McGraw-Hill Science Engineering (1999)
4. Materials and Processes in Manufacturing by E. Paul Degarmo, J T. Black, Ronald A. Kohser, John Wiley and Sons Inc, (2003)
5. İmal Usulleri, Prof. Dr. Mustafa Çiğdem, Çağlayan Kitapevi
7. Üretim Yöntemleri ve İmalat Teknolojileri, Mustafa Aydın, Muammer Gavas, Mustafa Yaşar, Yahya Altunpark, Seçkin Yayıncılık

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application 1 5
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 20
Toplam 8 100
Percentage of Semester Work 80
Percentage of Final Work 20
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory 13 2 26
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 5 5
Report
Homework Assignments 1 5 5
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 125