Dynamics of Machinery (ME426) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Dynamics of Machinery ME426 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
MECE303
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Behzat B Kentel
Course Assistants
Course Objectives To develop an ability • to perform motion analysis of single degree of freedom mechanisms, • to perform dynamic force analysis in mechanisms including the effect of friction • to perform balancing in rotating machinery and inertia variant machines
Course Learning Outcomes The students who succeeded in this course;
  • construct the equation of motion of single degree of freedom mechanisms using kinematic influence coefficients and apply numerical methods to solve for equation of motion
  • perform force analysis in mechanisms including the effects of friction at prismatic and revolute joints
  • perform force analysis in simple and planetary gear trains and construct power flow diagrams
  • perform balancing of rotating machinery, design counterweights to obtain completely-balanced in-line four-bar mechanisms and reduce shaking forces and moments of in-line multi-cylinder engines
Course Content Knematic influence coefficients, equation of motion of single degree of freedom systems, analytical and numerical solution methods, effects of dry and viscous friction, force analysis and power flow in simple and planetary gear trains, rotating mass balancing, balancing of inertia-variant machines, analysis of unbalance in multi-cylinder engines

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction and review of mechanisms Review of MECE 303 topics
2 Kinematic influence coefficients
3 Kinematic influence coefficients; equation of motion for single degree of freedom mechanisms
4 Equation of motion for single degree of freedom mechanisms
5 Numerical solution of equation of motion Review of MATH 380 topics
6 General considerations on dynamics of single degree of freedom mechanisms; speed fluctuation and flywheels
7 Speed fluctuation and flywheels
8 Mode of contact at prismatic joints; effects of friction at prismatic joints
9 Effects of friction at prismatic joints
10 Effects of friction at revolute joints
11 Force analysis in simple and planetary gear trains
12 Rotating mass balancing
13 Balancing of inertia variant machines; balancing of a four bar mechanism
14 Reciprocating engines; analysis of unbalance for in-line reciprocating engines

Sources

Other Sources 1. Kinematics and Dynamics of Machinery; R.L. Norton, 1st Ed. In SI units, McGraw-Hill, 2009
2. Theory of Machines and Mechanisms; J.J. Uicker, G.R. Pennock, J.E. Shigley, 5th Ed., Oxford University Press, 2016
3. Notes on Dynamics of Machinery; E.Söylemez, T.Tümer, N. Özgüven, K. Özgören, METU Mechanical Engineering Department, 1984

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 10
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 1 14
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 120