ECTS - Introduction to Artificial Intelligence

Introduction to Artificial Intelligence (CMPE462) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Artificial Intelligence CMPE462 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
(CMPE323 veya SE328)
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce basic concepts in both symbolic and non-symbolic approaches to Artificial Intelligence (AI).
Course Learning Outcomes The students who succeeded in this course;
  • To understand agent paradigm and its relation to AI.
  • To practice basic AI technique(s) and algorithms to different problem domains.
Course Content Agent Paradigm, Problem Solving by Searching, Informed/Uninformed Search Methods, Genetic Algorithms, Simulated Annealing, Constraint Satisfaction Problems, Adversarial Search, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony Optimization, Multi-Agent Systems & Intelligent Agents, Multi-Agent Interactions, Philosophical Foundations & Ethics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Agent Paradigm Chapters 1-2 (main text)
2 Agent Paradigm Chapter 1-2
3 Problem Solving by Searching, Ch 3
4 Informed/Uninformed Search Methods Ch. 4
5 Genetic Algorithms and Simulated Annealing Ch. 4
6 Constraint satisfaction problems Ch. 5
7 Adversarial Search Ch. 6
8 Logical Agents Ch. 7
9 Knowledge Engineering Resource #5
10 Expert Systems Resource #4
11 Expert Systems Resource #4
12 Communication Ch. 22
13 Communication Ch. 22
14 AI Applications Resource #3

Sources

Course Book 1. Artificial Intelligence: A Modern Approach (Second Edition). Stuart Russell and Peter Norvig Prentice-Hall, 2003, ISBN: 0-13-790395
Other Sources 2. 1. Artificial Intelligence, Patrick H. Winston, Addison-Wesley, 1992. ISBN: 0-201-533774.
3. 2. http://www.cs.rmit.edu.au/AI-Search/Product/
4. 3. “Engineering Applications of Artificial Intelligence” journal, ISSN: 0952-1976, Elsevier, B.V.
5. 4. Expert Systems: Principles and Programming, Fourth Edition by Joseph C. Giarratano and Gary D. Riley, PWS Publishing Company, 2004.
6. 5. Knowledge Representation and Reasoning, Ronald Brachman and Hector Levesque, The Morgan Kaufmann Series in Artificial Intelligence , 2004.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 35
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems. X
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems. X
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.) X
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively. X
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies. X
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 8 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125