Theory of Machines (MECE303) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Machines MECE303 5. Semester 3 1 0 3 6
Pre-requisite Course(s)
MECE204
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to introduce the preliminary concepts of mechanisms and to present methods of analysis for the motion and force transmission in mechanisms. In this introductory course in mechanisms, basics of mechanism analysis, cams, and gear trains will be discussed.
Course Learning Outcomes The students who succeeded in this course;
  • 1. to be able to identify mechanisms, determine degrees of freedom
  • 2. to be able to make kinematic analysis of mechanisms
  • 3. to be able to make force analysis of mechanisms
  • 4. to be able to graphically synthesize certain mechanisms including dyads with specified two or three positions
Course Content Introduction to mechanisms: basic concepts, mobility, basic types of mechanisms; position, velocity and acceleration analysis of linkages; cam mechanisms, gear trains; static and dynamic force analysis of mechanisms.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to mechanisms and basic concepts, joint and link types, kinematic chain, degrees of freedom of mechanisms
2 Four-bar linkage: Grashof's law, transmission angle, mechanical advantage, coupler curves
3 Kinematic inversion, Grubler’s equation and enumeration of mechanisms
4 Kinematic analysis of mechanisms, loop closure equations and their representation by vectors and complex numbers
5 Position analysis of mechanisms, solution techniques for loop closure equations
6 Position analysis of mechanisms, solution techniques for loop closure equations (cont’d)
7 Position analysis of mechanisms, solution techniques for loop closure equations (cont’d)
8 Velocity and acceleration analysis of mechanisms
9 Velocity and acceleration analysis of mechanisms (cont’d)
10 Cam mechanisms; analysis and design
11 Gear trains, simple gear trains
12 Planetary gear trains, bevel gears
13 Static force analysis of mechanisms
14 Dynamic force analysis of mechanisms (cont’d)
15 Exam Week
16 Exam Week

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems. X
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems. X
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.) X
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively. X
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings. X
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0