ECTS - Introduction to Modeling and Analysis of Dynamic Systems
Introduction to Modeling and Analysis of Dynamic Systems (PHYS512) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Modeling and Analysis of Dynamic Systems | PHYS512 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Translational mechanical systems; Standard forms for system models; Block diagrams; Computer solutions with MATLAB and FORTRAN; Rotational mechanical systems; Electrical systems; Laplace transform solutions of linear models. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Modeling and Simulation | Chapter 1 |
2 | Systems Science and Systems Engineering | Chapter 2 |
3 | A Framework for Modeling and Simulation | Chapter 3 |
4 | Defining the Need for Models and Simulation | Chapter 4 |
5 | Creating a Modeling and Simulation Baseline | Chapter 5 |
6 | Developing Models and Simulation | Chapter 6 |
7 | Designing Models | Chapter 7 |
8 | Producing and Managing Data | Chapter 8 |
9 | Midterm Exam | |
10 | Applications of Modeling and Simulation in Energy Systems Engineering, General | Chapter 9 |
11 | Application in Thermodynamics | Chapter 10 |
12 | Applications in Thermal Fluids | Chapter 11 |
13 | Applications in Renewable Systems | Chapter 12 |
14 | Applications in Conventional Systems | Chapter 13 |
15 | Verification, Validation and Accreditation | Chapter 14 |
16 | Final Exam |
Sources
Course Book | 1. Energy Systems: Optimization, Modeling, Simulation, and Economic Aspects, Journal, Springer, ISSN: 1868-3967 |
---|---|
Other Sources | 2. Averill M Law, Simulation Modeling and Analysis, 4th Edition, McGraw-Hill, 2007, ISBN-13 978007125519-6 |
3. Modeling and Analysis of Dynamic Systems, Ramin Esfandiari, CRC Press, 2010 ISBN:9781439808450 | |
4. David J. Cloud, Applied Modeling and Simulation, McGraw-Hill, 1998, ISBN-13 9780072283037 | |
5. Thoma, J. Ould Bouamama, B., Modeling and Simulation in Thermal and Chemical Engineering, 2000, Springer, ISBN: 978-3-540-66388-1 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 10 |
Presentation | - | - |
Project | 1 | 15 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 10 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Acquiring core knowledge of theoretical and mathematical physics together with their research methodologies. | X | ||||
2 | Gaining a solid understanding of the physical universe together with the laws governing it. | X | ||||
3 | Developing a working research skill and strategies of problem solving skills in theoretical, experimental, and/or simulation physics. | X | ||||
4 | Developing and maintaining a positive attitude toward critical questioning, creative thinking, and formulating new ideas both conceptually and mathematically. | X | ||||
5 | Ability to sense, identify, and handle the problems in theoretical, experimental, or applied physics, or in real-life industrial problems. | X | ||||
6 | Ability to apply the accumulated knowledge in constructing mathematical models, determining a strategy for its solution, making necessary and appropriate approximations, evaluating and assessing the correctness and reliability of the procured solution. | X | ||||
7 | Ability to communicate and discuss physical concepts, processes, and the newly obtained results with the colleagues all around the world both verbally and in written form as proceedings and research papers. | X | ||||
8 | Reaching and excelling an advanced level of knowledge and skills in one or more of the disciplines offered. | X | ||||
9 | An ability to produce, report and present an original or known scientific body of knowledge. | X | ||||
10 | An ability to make methodological scientific research. | X | ||||
11 | An ability to use existing physics knowledge to analyze, to determine a methodology of solution (theoretical/mathematical/experimental) and to solve a problem. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 5 | 3 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 5 | 10 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 126 |