Natural Computing (CMPE564) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Natural Computing CMPE564 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Computer Engineering Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to teach different nature inspired computing techniques; to gain an insight about how to solve real-life practical computing and optimization problems.
Course Learning Outcomes The students who succeeded in this course;
  • Gain necessary knowledge about nature-inspired computing mechanisms, including Hill Climbing, Simulated Annealing, Genetic Algorithms, Neural Networks, Swarm Intelligence (e.g. Ant Colonies, Particle Swarm Optimization) and Artificial Immune Systems.
  • Understand and improve the mentioned nature inspired computing techniques
  • Applying the nature-inspired computing techniques to real-life practical problems
  • Develop necessary software codes in the nature-inspired computing context.
Course Content Problem solving by search, hill climbing, simulated annealing, artificial neural networks, genetic algorithms, swarm intelligence (including ant colony optimization and particle swarm optimization), artificial immune systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Natural Computing Chapter 1 & 2 (Course Book)
2 Introduction to Natural Computing Chapter 1 & 2 (Course Book)
3 Problem Solving by Search; Hill Climbing; Simulated Annealing Chapter 3 (Course Book) and Source #1
4 Evolutionary Computing: Genetic Algorithms. Chapter 3 (Course Book) and Source #1
5 Evolutionary Computing: Genetic Algorithms. Chapter 3 (Course Book) and Source #1
6 Neurocomputing and Artificial Neural Networks Chapter 4 (Course Book) and Source #2
7 Neurocomputing and Artificial Neural Networks Chapter 4 (Course Book) and Source #2
8 Swarm Intelligence: Ant Colony Optimization Chapter 5 (Course Book) and Source #3
9 Swarm Intelligence: Ant Colony Optimization Chapter 5 (Course Book) and Source #3 Chapter 5 (Course Book)
10 Swarm Intelligence: Particle Swarm Optimization Chapter 5 (Course Book)
11 Swarm Intelligence: Particle Swarm Optimization Chapter 5 (Course Book)
12 Artificial Immune Systems Chapter 6 (Course Book)
13 Artificial Immune Systems Chapter 6 (Course Book)
14 Artificial Immune Systems Chapter 6 (Course Book)
15 Review
16 Review

Sources

Course Book 1. Leandro Nunes de Castro, Fundamentals of Natural Computing: Basic Concepts, Algorithms and Applications, Chapman & Hall/CRC, 2006, ISBN 1-58488-643-9.
Other Sources 2. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice-Hall, 2003, ISBN: 0-13-790395-2.
3. J. Hertz, A. Krogh and R.G. Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley Publishing Company, 1991, ISBN: 0-201-50395-6.
4. M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, 2004. ISBN: 0-262-04219-3.
5. Artificial Intelligence, Patrick H. Winston, Addison-Wesley, 1992. ISBN: 0-201-533774.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation 1 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply advanced knowledge of computing and/or informatics to solve software engineering problems. X
2 Develop solutions using different technologies, software architectures and life-cycle approaches. X
3 An ability to design, implement and evaluate a software system, component, process or program by using modern techniques and engineering tools required for software engineering practices. X
4 An ability to gather/acquire, analyze, interpret data and make decisions to understand software requirements.
5 Skills of effective oral and written communication and critical thinking about a wide range of issues arising in the context of working constructively on software projects.
6 An ability to access information in order to follow recent developments in science and technology and to perform scientific research or implement a project in the software engineering domain.
7 An understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering.
8 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards of excellence for software engineering practices standards and methodologies.
9 An understanding about the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions.
10 Promote the development, adoption and sustained use of standards of excellence for software engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration 1 5 5
Project
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 131