Art of Mosaic (ART289) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Art of Mosaic ART289 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Experiencing the methods used in mosaic art with written and visual materials.
Course Learning Outcomes The students who succeeded in this course;
  • Throughout history, have knowledge about mosaic techniques used in both architecture and daily objects. The student learns the basic mosaic techniques and experiences the mosaic art with different materials and sizes.
Course Content Information about mosaic art and mosaic construction techniques used as an ornamentation element for centuries.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introducing the course and explaining the contents
2 The basic definition of mosaic art and mosaic techniques
3 The places where mosaic is used and the color and pattern studies of the mosaic
4 Pattern work of Mosaic
5 Pattern work of Mosaic
6 Practice - Ground preparation and pattern transfer for Glass Mosaic
7 Practice - glass mosaic
8 Practice - glass mosaic
9 Practice - Preparing the ground for Podima Mosaic and pattern transfer
10 Practice - podima mosaic
11 Practice - podima mosaic
12 Practice - Preparation and pattern transfer for mosaic
13 Practice - mosaic
14 Practice - mosaic
15 Practice - mosaic
16 Final Evaluation

Sources

Other Sources 1. Önal, M. ve Yılmaz, M. S. (2009). “Kültürler arası bir bağlantı: Mozaik” AIMC XI. Uluslararası Mozaik Kongresi Bildirileri. Gaziantep: Gaziantep Müzesi Yayını.
2. Şahin, M. (Ed.). (2008). IV Uluslararası Türkiye Mozaik Korpusu Sempozyum Bildirileri “Geçmişten Günümüze Mozaik Köprüsü”. Derya Şahin ve A. Ali Altın (Yay. Haz.). Bursa: Uludağ Üniversitesi Mozaik Araştırmaları Merkezi.
3. Weston, A. (2014). Mozaik. İstanbul: İnkilap Kitabevi.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 3 25
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 30
Toplam 20 75
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the software engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems.
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; the ability to utilize information technologies effectively.
5 The ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually.
7 Effective oral and written communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8 The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
9 Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development
10 The ability to behave according to ethical principles, awareness of professional and ethical responsibility. X
11 Knowledge of the standards utilized in software engineering applications.
12 Knowledge on business practices such as project management, risk management and change management.
13 Awareness about entrepreneurship, and innovation.
14 Knowledge on sustainable development.
15 Knowledge of the effects of software engineering applications on the universal and social dimensions of health, environment, and safety.
16 Awareness of the legal consequences of engineering solutions.
17 An ability to apply algorithmic principles, mathematical foundations, and computer science theory in the modeling and design of computer-based systems with the trade-offs involved in design choices.
18 The ability to apply engineering approach to the development of software systems by analyzing, designing, implementing, verifying, validating and maintaining software systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 3 9 27
Special Course Internship
Field Work
Study Hours Out of Class 3 1 3
Presentation/Seminar Prepration
Project
Report
Homework Assignments 1 10 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 100