Russian V (RUS401) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Russian V RUS401 General Elective 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Russian
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Problem Solving, Team/Group, Brain Storming, Role Play, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Instructor MDB Diğer Diller Öğr.Gör.
Course Assistants
Course Objectives The general aim of this course is to help students gain the necessary Russian language skills in order to communicate in level A2+* (Basic User) as stated in Common European Framework of Reference as the continuation of RUS301 & RUS302.
Course Learning Outcomes The students who succeeded in this course;
  • Reading • Can read and understand texts related to personal presentation, business life, education and science, written in the language frequently encountered in daily life.
  • Speaking • Can talk about science and new technologies, • Can participate in a conversation that is familiar or of personal interest or about everyday life (e.g. family, leisure activities, work, travel and current events) without preparation, • Can tell a story or explain the subject and content of the book or movie,
  • Listening • Understand announcements and news on TV and radio (e.g. traffic information, accidents, warnings), • Can understand the outlines of issues related to professional or personal interests.
  • Writing: • Can write simple, self-contained texts on familiar or personally relevant topics, • Can write texts containing own experiences and impressions.
  • Technology Use: Take responsibility by carrying out the necessary technological activities on their own time.
Course Content Vocabulary, structure and communicative skills at pre-intermediate level; up to date topics on newspapers, magazines, and books.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Course Memo
2 Unit 1: Active/Passive Clauses Travel page 5
3 Unit 1: Verbs with suffixes Talking about education and job Page 20
4 Unit 1: Active Participles Page 28
5 Unit 2: Past Participles Page 39
6 Unit 2: Passive Particples Page 46
7 Unit 2: Reading and Translation Practice Page 48
8 MIDTERM EXAM
9 Unit 3: Past Tense Active Adjectives Page 66
10 Unit 3: Past Tense Verbs, Affiirmative Page 70
11 Unit 3: Adjectives (long and short) Page 76
12 Unit 3: Reading Practice and Translation Page 80
13 Unit 3: Reading and Translation Practice Page 81
14 Unit 3: Reading and Translation Practice Page 89
15 REVISION
16 FINAL EXAM

Sources

Course Book 1. V.Antonova, M.Nahabina, A.Tolstıh. (2004) Doroga v Rossiyu 3 , Zlatoust Yayınları, Moskova,
2. Tsentr’’Zlatoust’’197101, Russia, St. Petersburg Kamennoostrovskij pr., 24b, off.1-H

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the software engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems.
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; the ability to utilize information technologies effectively.
5 The ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually.
7 Effective oral and written communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8 The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. X
9 Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development
10 The ability to behave according to ethical principles, awareness of professional and ethical responsibility.
11 Knowledge of the standards utilized in software engineering applications.
12 Knowledge on business practices such as project management, risk management and change management.
13 Awareness about entrepreneurship, and innovation.
14 Knowledge on sustainable development.
15 Knowledge of the effects of software engineering applications on the universal and social dimensions of health, environment, and safety.
16 Awareness of the legal consequences of engineering solutions.
17 An ability to apply algorithmic principles, mathematical foundations, and computer science theory in the modeling and design of computer-based systems with the trade-offs involved in design choices.
18 The ability to apply engineering approach to the development of software systems by analyzing, designing, implementing, verifying, validating and maintaining software systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 100