ECTS - Agile Methods in Software Development
Agile Methods in Software Development (SE470) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Agile Methods in Software Development | SE470 | Area Elective | 2 | 2 | 2 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The course objective is to teach the fundamental principles and practices associated with each of the agile development methods. A variety of agile methods will be described, but the focus will be on Scrum and Extreme Programming. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to agile methods, eXtreme Programming (XP), Lean, Scrum, Crystal, feature-driven development (FDD), Kanban; dynamic systems development method (DSDM); architecture and design issues in agile software methods. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Agile Development Methods Overview | Course Notes |
2 | Agile Development Methods Overview | Course Notes |
3 | eXtreme Programming (XP) | Course Notes |
4 | eXtreme Programming (XP) | Course Notes |
5 | Scrum – Introduction, Estimating and Planning | Course Notes |
6 | Scrum – Introduction, Estimating and Planning | Course Notes |
7 | Midterm Exam | |
8 | Crystal Methodologies | Course Notes |
9 | Open and Agile Unified Process | Course Notes |
10 | Test Driven Development | Course Notes |
11 | Feature-Driven Development and Kanban | Course Notes |
12 | Architecture and Design Issues in Lean Development | Course Notes |
13 | Dynamic Systems Development Method (DSDM) | Course Notes |
14 | Enterprise Agility, Team Dynamics and Collaboration | Course Notes |
15 | Enterprise Agility, Team Dynamics and Colaboration | Course Notes |
16 | Final Examination Period | Review of topics |
17 | Final Examination Period | Review of topics |
Sources
Course Book | 1. Course Notes and online resources will be provided |
---|---|
Other Sources | 2. Agile Software Development Ecosystems by Jim Highsmith, Addison-Wesley 2002, ISBN 0201760436 |
3. The Art of Agile Development" by James Shore and Shane Warden, O'Reilly Media; 1 edition (November 2, 2007)- ISBN-10: 0596527675 | |
4. "Succeeding with Agile: Software Development Using Scrum" by Mike Cohn, Addison-Wesley Professional; 1 edition (November 5, 2009), ISBN-10: 0321579364 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 20 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 5 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the software engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | X | ||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | |||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; the ability to utilize information technologies effectively. | X | ||||
5 | The ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams; ability to work individually. | X | ||||
7 | Effective oral and written communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
8 | The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. | |||||
9 | Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development | |||||
10 | The ability to behave according to ethical principles, awareness of professional and ethical responsibility. | |||||
11 | Knowledge of the standards utilized in software engineering applications. | |||||
12 | Knowledge on business practices such as project management, risk management and change management. | X | ||||
13 | Awareness about entrepreneurship, and innovation. | |||||
14 | Knowledge on sustainable development. | |||||
15 | Knowledge of the effects of software engineering applications on the universal and social dimensions of health, environment, and safety. | |||||
16 | Awareness of the legal consequences of engineering solutions. | |||||
17 | An ability to apply algorithmic principles, mathematical foundations, and computer science theory in the modeling and design of computer-based systems with the trade-offs involved in design choices. | |||||
18 | The ability to apply engineering approach to the development of software systems by analyzing, designing, implementing, verifying, validating and maintaining software systems. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | 3 | 5 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 130 |