ECTS - Theory of Continuous Media II

Theory of Continuous Media II (MDES679) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Theory of Continuous Media II MDES679 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course introduces the students with the theories of elasticity, thermoelasticity, viscoelasticity and plasticity in a unified manner.
Course Learning Outcomes The students who succeeded in this course;
  • Students will learn the basics of theory of elasticity and thermoelasticity. Students will learn the basics of theory of elasticity and thermoelasticity. Students will learn the basics of theory of elasticity and thermoelasticity.
Course Content Energy an virtual work equations, second law of thermodynamics, entropy, reversible and irreversible processes; theory of thermoelasticity, Gibbs relation; adiabatic and isothermal deformations; Clausius-Duhem inequality; constitutive equations, material symmetry restrictions; theory of viscoelasticity, theory of plasticity; applications.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Energy an virtual work equations. Chapter 1: Preliminaries
2 Second Law of thermodynamics in continuum mechanics:entropy, reversible and irreversible processes, entropy in classical thermodynamics. Chapter 1
3 Second Law of thermodynamics in continuum mechanics: generalization of entropy inequality for continuum mechanics (Clausius-Duhem inequality). Chapter 1
4 Gibbs relation for a thermoelastic material: adiabatic and isothermal deformations, strain energy function. Chapter 2: Theory of Thermoelasticity
5 Lagrangian form of energy equation and Clausius-Duhem inequality, Linearization of the field equations of thermoelasticity, Positive definiteness of strain energy function. Chapter 2
6 Boundary conditions for thermoelastic bodies, Some illustrative examples in linear thermoelasticity. Chapter 2
7 Fundamental postulates. Chapter 3: Constitutive equations
8 Material symmetry restrictions Chapter 3:
9 Models for viscoelastic behaviours, experimental determination of complex modulus. Chapter 4: Theory of Viscoelasticity
10 Constitutive equations of a general viscoelastic material, Field equations of viscoelasticity. Chapter 4
11 Correspondence principle, Some illustrative examples. Chapter 4
12 Correspondence principle, Some illustrative examples. Chapter 5: Theory of Plasticity
13 Plastic potential theory Chapter 5
14 Some illustrative Applications. Chapter 5
15 Overall review -
16 Final exam -

Sources

Course Book 1. Malvern L. E., Introduction to Mechanics of Continuous Media, Prentice-Hall, Englewood Cliffs, New Jersey (1969)
Other Sources 2. Fung Y. C., A First Course in Continuum Mechanics, Prentice- Hall, Englewood Cliffs, New Jersey (1977)
3. Chung T. J., Continuum Mechanics, Prentice- Hall, Englewood Cliffs, New Jersey (1988)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 6 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to carry out advanced research activities, both individual and as a member of a team X
2 Ability to evaluate research topics and comment with scientific reasoning X
3 Ability to initiate and create new methodologies, implement them on novel research areas and topics X
4 Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions X
5 Ability to apply scientific philosophy on analysis, modelling and design of engineering systems X
6 Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level X
7 Contribute scientific and technological advancements on engineering domain of his/her interest area X
8 Contribute industrial and scientific advancements to improve the society through research activities X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 3 18
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 8 8
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 132