ECTS - Advanced Artificial Intelligence
Advanced Artificial Intelligence (MDES677) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Advanced Artificial Intelligence | MDES677 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | To introduce advanced concepts and different approaches to Artificial Intelligence (AI) (including symbolic and non-symbolic ones). To extent the engineering vision of the student. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Intelligent agents, problem solving by searching, informed/uninformed search methods, exploration, constraint satisfaction problems, game playing, knowledge and reasoning: first-order logic, knowledge representation, learning, selected topics: evolutionary computing, multiagent systems, artificial neural networks, ant colony optimization. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Intelligent Agents | Chapters 1-2 from Russell & Norvig |
2 | Intelligent Agents | Chapter 1-2 from Russell & Norvig |
3 | Informed/Uninformed Search Methods, Exploration | Chapter 3-4 from Russell & Norvig |
4 | Informed/Uninformed Search Methods, Exploration | Chapter 3-4 from Russell & Norvig |
5 | Constraint Satisfaction Problems | Chapter 5 from Russell & Norvig |
6 | Constraint Satisfaction Problems | Chapter 5 from Russell & Norvig |
7 | Game Playing | Chapter 6 from Russell & Norvig |
8 | Knowledge and Reasoning : Logical Agents | Chapter 7 from Russell & Norvig |
9 | Knowledge and Reasoning : First-Order Logic | Chapter 8 from Russell & Norvig |
10 | Knowledge and Reasoning : Inference in First-Order Logic | Chapter 9 from Russell & Norvig |
11 | Selected Topics : Evolutionary Computing | Source #5 |
12 | Selected Topics : Multiagent Systems | Source #4 |
13 | Selected Topics : Neural Networks | Source #3 |
14 | Selected Topics : At Colony Optimization | Source #1 |
15 | Overall review | - |
16 | Final exam | - |
Sources
Course Book | 1. Artificial Intelligence: A Modern Approach (Second Edition). Stuart Russell and Peter Norvig, Prentice-Hall, 2003, ISBN: 0-13-790395 |
---|---|
Other Sources | 2. Ant Colony Optimization, Marco Dorigo and Thomas Stützle, MIT Press, 2004. |
3. Artificial Intelligence, Patrick H. Winston, Addison-Wesley, 1992. | |
4. Introduction to the Theory of Neural Computation, J. Hertz, A. Krogh and R.G. Palmer, Addison-Wesley Publishing Company, 1991 | |
5. An Introduction to MultiAgent Systems, Wooldridge, M., John Wiley & Sons, 2002 | |
6. An Introduction to Genetic Algorithms, Melanie Mitchell, MIT Press, 1998 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | 1 | 10 |
Project | 1 | 25 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 25 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 4 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Ability to carry out advanced research activities, both individual and as a member of a team | X | ||||
2 | Ability to evaluate research topics and comment with scientific reasoning | X | ||||
3 | Ability to initiate and create new methodologies, implement them on novel research areas and topics | X | ||||
4 | Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions | X | ||||
5 | Ability to apply scientific philosophy on analysis, modelling and design of engineering systems | X | ||||
6 | Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level | X | ||||
7 | Contribute scientific and technological advancements on engineering domain of his/her interest area | X | ||||
8 | Contribute industrial and scientific advancements to improve the society through research activities | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | 3 | 5 | 15 |
Project | 1 | 20 | 20 |
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 133 |