ECTS - Chemical Thermodynamics of Materials
Chemical Thermodynamics of Materials (MDES665) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Chemical Thermodynamics of Materials | MDES665 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Focus Course |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of the course is to give students the fundamentals of and the philosophy behind the Laws Thermodynamics giving strong emphasis to the physical significance of thermodynamic definitions, functions and properties and applying the thermodynamic fundamentals to the behavior of materials systems and processes. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Advanced treatment of the thermodynamic properties of inorganic materials; laws of thermodynamics and their application to the chemical behavior of materials systems; multicomponent systems, phase and chemical reaction equilibria; thermodynamics of phase transformations; introductory surface thermodynamics. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Scope of Thermodynamics of Materials, basic definitions, Closed Systems, First Laws of Thermodynamics. | Related pages of the textbook and other sources |
2 | Internal Energy, Enthalpy, Entropy, Helmholtz and Gibbs Free Energies, Energy Balance, Equilibrium and Spontaneity Criteria | Related pages of the textbook and other sources |
3 | Phase Equilibria in One-Component Systems | Related pages of the textbook and other sources |
4 | Open Systems, Chemical Potential, Partial Molar and Integral Molar Thermodynamic Quantities | Related pages of the textbook and other sources |
5 | Equilibrium and Spontaneity Criteria for Open Systems | Related pages of the textbook and other sources |
6 | Standard State, Fugacity, Activity, Activity Coefficient | Related pages of the textbook and other sources |
7 | Chemical Reactions, Standard Reactions, Activity Quotient and Equilibrium Constant, Spontaneity of Chemical Reactions, Equilibrium Calculations, Effects of Pressure and Temperature on Chemical Reactions | Related pages of the textbook and other sources |
8 | Binary Solutions, Ideal and Non-Ideal Solutions, Raoult’s and Henry’s Laws, Excess Properties, Relationship between Partial Molar and Integral Molar Quantities | Related pages of the textbook and other sources |
9 | Integration of the Gibbs-Duhem equation, Solution Models, Regular Solution, Dilute Solutions, , Change of Standard States | Related pages of the textbook and other sources |
10 | Gibbs Free Energy and Composition Diagrams for binary systems | Related pages of the textbook and other sources |
11 | Change of Standard States and Quantitative Construction of the Gibbs Free Energy and Composition Diagrams and Phase Diagrams of Binary Systems | Related pages of the textbook and other sources |
12 | Stable and Unstable Equilibria in Binary Systems, Thermodynamics of Phase Transformations, Spinodal Decomposition | Related pages of the textbook and other sources |
13 | Multicomponent Solutions, Interaction Coefficients | Related pages of the textbook and other sources |
14 | Surface Tension, Effect of Curvature and Particle Size on Thermodynamic Properties, Equilibrium Conditions for Pressures, Solubilities of Small Particle Size Phases | Related pages of the textbook and other sources |
15 | Overall review | - |
16 | Final exam | - |
Sources
Course Book | 1. C.H.P. Lupis, “Chemical Thermodynamics of Materials” Elsevier, 1983. |
---|---|
Other Sources | 2. 1. D.R. Gaskell, “Introduction to the Thermodynamics of Materials”, Taylor and Francis, 1995. |
3. 2. D.V. Ragone, “Thermodynamics of Materials”, Volumes I and II, John Wiley, 1995. | |
4. 3. R.T. De Hoff, “Thermodynamics in Materials Science”, Mc Graw Hill 1993. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Ability to carry out advanced research activities, both individual and as a member of a team | X | ||||
2 | Ability to evaluate research topics and comment with scientific reasoning | X | ||||
3 | Ability to initiate and create new methodologies, implement them on novel research areas and topics | X | ||||
4 | Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions | X | ||||
5 | Ability to apply scientific philosophy on analysis, modelling and design of engineering systems | X | ||||
6 | Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level | X | ||||
7 | Contribute scientific and technological advancements on engineering domain of his/her interest area | X | ||||
8 | Contribute industrial and scientific advancements to improve the society through research activities | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 6 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 8 | 16 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 136 |