ECTS - Numerical Methods in Heat Transfer
Numerical Methods in Heat Transfer (ME635) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Numerical Methods in Heat Transfer | ME635 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Ph.D. |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer. |
Course Lecturer(s) |
|
Course Objectives | The purpose of the course is to find the roots of equations, to perform numerical integration and diferentiation, to solve nonlinear equation systems, to solve ordinary and partial differential equations and to use numerical methods for the solutions of some differential equations used in heat transfer and to find the fitting curve to the available numerical data with the least squares method. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | The determination of the roots of equations numerically, solving nonlinear equation systems numerically, numerical integration, using finite difference methods for differential calculations, solving ordinary differential equations numerically, applying finite difference method to heat transfer applications, least squares method. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Numerical Methods in Engineering | |
2 | Introduction to Numerical Methods in Engineering | |
3 | Basic Principles of Computational Fluid Dynamics. | |
4 | Basic Equations of Momentum and Energy Equations. | |
5 | Basic Equations of Momentum and Energy Equations. | |
6 | Clasification of Partial Differential Equations. | |
7 | Determination of the roots of equations numerically | |
8 | Numerical integration | |
9 | Solving equation systems numerically | |
10 | Finite Difference Method. | |
11 | Applying finite difference method to heat transfer applications | |
12 | Applying finite difference method to heat transfer applications | |
13 | Applying finite difference method to heat transfer applications | |
14 | Introduction to Commercial CFD Softwares and Applications. |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 20 |
Presentation | - | - |
Project | 1 | 10 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 8 | 100 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Ability to carry out advanced research activities, both individual and as a member of a team | |||||
2 | Ability to evaluate research topics and comment with scientific reasoning | |||||
3 | Ability to initiate and create new methodologies, implement them on novel research areas and topics | |||||
4 | Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions | |||||
5 | Ability to apply scientific philosophy on analysis, modelling and design of engineering systems | |||||
6 | Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level | |||||
7 | Contribute scientific and technological advancements on engineering domain of his/her interest area | |||||
8 | Contribute industrial and scientific advancements to improve the society through research activities |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | |||
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | 4 | 5 | 20 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 6 | 12 |
Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
Total Workload | 94 |