ECTS - Computer Aided Machine Design

Computer Aided Machine Design (ME610) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Computer Aided Machine Design ME610 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course covers Machine Design Methodology; strategies, objectives, analysis, synthesis. Machine kinematic design, stress analysis, fracture and fatigue, design for strength, design for rigidity. Design optimization, numerical methods. Applications of design algorithm for several machine elements. The objective of this course is to teach computational approaches for machine design optimization, design objectives, design variables and design constraints for various machine elements, application of design by VBA algorithm and CAD.
Course Learning Outcomes The students who succeeded in this course;
  • The students will have the ability to 1. Analyze the response of different machines, components and structures under various kind of loadings 2. Define a physical problem of machine design as an optimization problem by defining objective functions, constraints, etc. 3. Conduct computer aided kinematic analysis 4. Conduct computer aided stress analysis 5. Design machine elements under dynamic loading
Course Content The objective of this course is to improve the research and communication skills of students early in their graduate program to help them better plan, conduct and present their research and thesis work.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Machine Design Methodologies
2 Machine Static Design
3 Machine Kinematic Design
4 Basics of mathematical approaches for machine modeling
5 Basics of mathematical approaches for machine modeling
6 Basics of Numerical approaches for machine modeling
7 Basics of Numerical approaches for machine modeling
8 Design Optimization Methodologies
9 Design Optimization Methodologies
10 The use of specialized programs in Machine Design
11 The use of specialized programs in Machine Design
12 Use of finite element analysis to analyze mechanical systems.
13 Use of finite element analysis to analyze mechanical systems.
14 Design of machines under dynamic loading conditions

Sources

Course Book 1. Dimarogonas, A. D. (1989). Computer aided machine design. Prentice-Hall, Inc..

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application 1 10
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to carry out advanced research activities, both individual and as a member of a team
2 Ability to evaluate research topics and comment with scientific reasoning
3 Ability to initiate and create new methodologies, implement them on novel research areas and topics
4 Ability to produce experimental and/or analytical data in systematic manner, discuss and evaluate data to lead scintific conclusions
5 Ability to apply scientific philosophy on analysis, modelling and design of engineering systems
6 Ability to synthesis available knowledge on his/her domain to initiate, to carry, complete and present novel research at international level
7 Contribute scientific and technological advancements on engineering domain of his/her interest area
8 Contribute industrial and scientific advancements to improve the society through research activities

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 7 2 14
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 6 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 140