ECTS - Calculus for Management and Economics Students

Calculus for Management and Economics Students (MATH102) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Calculus for Management and Economics Students MATH102 2. Semester 3 0 0 3 5
Pre-requisite Course(s)
(MATH101 veya MATH103)
Course Language English
Course Type Service Courses Taken From Other Departments
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Team/Group.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is intended to give skills in differential and integral calculus of one variable and differential calculus of several variables with a variety of examples that highlight the direct application of calculus to the economic, social and managerial sciences.
Course Learning Outcomes The students who succeeded in this course;
  • understand fundamental concepts of limit and continuity
  • understand the meaning of derivative and be able to compute derivatives of elementary functions
  • use derivatives to solve problems involving maxima, minima
  • understand integration techniques, and use integration to solve area problems
  • understand partial derivatives, and find the local or absolute extrema of functions of several variables with given constraints
Course Content Limits and continuity, derivative, applications of derivative, integration, applications of integral, functions of several variables, partial derivatives, extrema of functions of several variables.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Limits pp. 448-457, 458-465
2 Continuity, The Derivative pp. 466-471, 481-488
3 Rules for Differentiation, Differentiability and Continuity, Product and Quotient Rule pp. 489-496, 506-514
4 The Chain Rule and the Power Rule, Derivatives of Logarithmic Functions, Derivatives of Exponential Functions pp. 515-522, 529-533, 534-538
5 Implicit Differentiation, Logarithmic Differentiation, Higher Order Derivatives pp. 544-548, 549-552, 557-559
6 Relative Extrema, Absolute Extrema on a Closed Interval pp. 567-577, 578-579
7 Concavity , The Second Derivative Test pp. 580-586, 587-588
8 Asymptotes, Applied Maxima and Minima pp. 589-598, 599-610
9 Indefinite Integrals, Integration with Initial Conditions, More Integration Formulas pp. 623-628, 629-632, 633-639
10 Techniques of Integration, The Definite Integral, The Fundamental Theorem of Calculus pp. 640-644, 645-650, 651-658
11 Area, Area Between Curves pp. 664-667, 668-674
12 Integration by Parts, Functions of Several Variables pp. 685-688, 745-749
13 Partial Derivatives, Higher-Order Partial Derivatives pp. 750-754, 763-765
14 Maxima and Minima for Functions of Two Variables, Lagrange Multipliers pp. 769-777, 778-784
15 Review
16 Final Exam

Sources

Course Book 1. Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences, 11th Edition; E. F. Haeussler, Jr./ R. S. Paul, Prentice-Hall International Inc.
Other Sources 2. Calculus for Business, Economics, and Social Sciences, 9th Edition; R. A. Barnett / M. R. Ziegler / K. E. Byleen, Prentice-Hall
3. Calculus: A complete Course, R. A. Adams, 3rd Edition; Addison Wesley
4. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquiring the skills of understanding, explaining, and using the fundamental concepts and methods of economics
2 Acquiring the skills of macro level economic analysis
3 Acquiring the skills of micro level economic analysis
4 Understanding the formulation and implementation of economic policies at the local, national, regional, and/or global level
5 Learning different approaches on economic and related issues
6 Acquiring the quantitative and/or qualitative techniques in economic analysis
7 Improving the ability to use the modern software, hardware and/or technological devices
8 Developing intra-disciplinary and inter-disciplinary team work skills
9 Acquiring an open-minded behavior through encouraging critical analysis, discussions, and/or life-long learning
10 Adopting work ethic and social responsibility
11 Developing the skills of communication.
12 Improving the ability to effectively implement the knowledge and skills in at least one of the following areas: economic policy, public policy, international economic relations, industrial relations, monetary and financial affairs.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 57