ECTS - Digital Image Processing
Digital Image Processing (CMPE464) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Digital Image Processing | CMPE464 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The main aim of the course is : to give an introduction to 1-D and 2-D signals, to give introduction to spatial domain and frequency domain of signals to give an introduction to theories and mathematical methods used in image analysis, to introduce the analytical tools and methods which are currently used in digital image processing, and to make the students to apply these tools in the laboratory in image restoration, enhancement and compression. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to signal and image processing, introduction to digital image processing, sampling, reconstruction, and quantization, digital image representation, image transforms, enhancement, restoration, segmentation and description. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to signals and systems | Other sources |
2 | 1-D and 2-D Signals and signal processing | Other source |
3 | Sampling and quantization of 2-D signals | Other source |
4 | Introduction to Digital Images, and image processing applications | Ch.1 (main text) |
5 | Fundamentals of image processing | Ch.1-2 (main text) |
6 | Intensity Transformations and Spatial Filtering | Ch. 2 |
7 | Processing of 1-D and 2-D signals, and processing in the frequency domain, mathematical fundamentals of fast fourier transform | Ch. 2 |
8 | Image Enhancement | Ch.3, Ch. 4 |
9 | Image Restoration | Ch.5 |
10 | Color Image Processing | Ch. 6 |
11 | Image Compression | Ch.8 |
12 | Morphological Image Processing | Ch.9 |
13 | Image Segmentation | Ch.10 |
14 | Object Recognition. | Ch.12 |
Sources
Course Book | 1. Gonzalez, R. C., Woods, R. E., Digital Image Processing, Addison-Wesley, 2008. |
---|---|
Other Sources | 2. 1. Jain, A. K., Fundamentals of digital Image Processing, Prentice-Hall. |
3. 2. Castleman, K. R., Digital Image Processing, Prentice Hall. | |
4. 3. John G. Prokis and Dimitris G. Manolakis, “Digital Signal Processing: Principle, Algorithms and Applications” Prentice Hall Inc., Englewood Cliffs, NJ (USA), 3rd Ed., 1996. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 35 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 7 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | An ability to apply knowledge of mathematics, science, and engineering. | X | ||||
2 | An ability to design and conduct experiments, as well as to analyse and interpret data. | X | ||||
3 | An ability to design a system, component, or process to meet desired needs. | X | ||||
4 | An ability to function on multi-disciplinary domains. | |||||
5 | An ability to identify, formulate, and solve engineering problems. | X | ||||
6 | An understanding of professional and ethical responsibility. | X | ||||
7 | An ability to communicate effectively. | X | ||||
8 | Recognition of the need for, and an ability to engage in life-long learning. | X | ||||
9 | A knowledge of contemporary issues. | X | ||||
10 | An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. | |||||
11 | Skills in project management and recognition of international standards and methodologies | X | ||||
12 | An ability to produce engineering products or prototypes that solve real-life problems. | X | ||||
13 | Skills that contribute to professional knowledge. | X | ||||
14 | An ability to make methodological scientific research. | |||||
15 | An ability to produce, report and present an original or known scientific body of knowledge. | |||||
16 | An ability to defend an originally produced idea. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 8 | 40 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 129 |