Computer Graphics (CMPE473) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Computer Graphics CMPE473 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to teach the students basic principles and techniques of computer graphics. The students will develop graphic programs using OPENGL in laboratory environment.
Course Learning Outcomes The students who succeeded in this course;
  • Describe hardware and software components of graphics systems
  • Apply fundamental algorithms for representation of basic primitives
  • Use two and three dimensional transformations
  • Apply two and three dimensional viewing pipeline
  • Implement graphic programs using OpenGL
Course Content Hardware and software components of graphic systems; output and filled data primitives; 2D and 3D geometric transformation; 2D and 3D viewing pipelines; visible-surface detection methods.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Overview of graphics systems Chapters 1-2 (main text)
2 Output primitives Chapter 3-5
3 Output primitives Chapter 3-9
4 Two-dimensional geometric transformations Chapter 5-1, 5-2, 5-3, 5-4, 5-5, 5-8
5 Two-dimensional viewing Chapter 6-1, 6-2, 6-3
6 (continue) Two-dimensional viewing Chapter 6-5, 6-6
7 (continue) Two-dimensional viewing Chapter 6-7, 6-8
8 Filled-area primitives Chapter 4-10, 4-13
9 Three-dimensional geometric transformations Chapter 5-9, 5-10, 5-11
10 (continue) Three-dimensional geometric transformations Chapter 5-12, 5-13, 5-15
11 Three-dimensional viewing Chapter 7-1, 7-2, 7-3, 7-4,
12 Three-dimensional viewing Chapter 7-5, 7-6, 7-7, 7-8, 7-9
13 Three-dimensional viewing Chapter 7-11
14 Visible-surface detection methods Chapter 9-1, 9-2, 9-3

Sources

Course Book 1. Computer Graphics, with OpenGL, Hearn D., Baker M.P., 3rd Edition, Prentice-Hall, 2003.
Other Sources 2. 1. Computer Graphics, Princples and Practicein C, Foley J.D., Van Dam A., Feiner S.K., Huges j. F., 2nd Edition, Addison-Wesley, 1996
3. 2. Computer Graphics, A Programming Approach, Harrington S., McGraw-Hill, 1987.
4. 3. Procedural Elements for Computer Graphics, Rogers D. F., McGraw-Hill, 1984
5. 4. OpenGL SuperBible, R. S. Wright, Jr., M. Sweet, 2nd Edition, Waite Group, 2000.
6. 5. OpenGL SuperBible, Richard S. Wright, Benjamin Lipchak, 3rd Edition, Sams, 2005.
7. 6. Computer Graphics Using OpenGL, Francis S. Hill Jr., Stephen M Kelley, 3rd Edition, Macmillan, 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 25
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 45
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the computer engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in computer engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the computer engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually
7 Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
8 The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
9 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
10 The ability to behave according to ethical principles, awareness of professional and ethical responsibility;
11 Knowledge of the standards utilized in software engineering applications
12 Knowledge on business practices such as project management, risk management and change management;
13 Awareness about entrepreneurship, innovation
14 Knowledge on sustainable development
15 Knowledge on the effects of computer engineering applications on the universal and social dimensions of health, environment and safety;
16 Awareness of the legal consequences of engineering solutions
17 An ability to describe, analyze and design digital computing and representation systems. X
18 An ability to use appropriate computer engineering concepts and programming languages in solving computing problems. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 4 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 127