ECTS - Language Processors
Language Processors (CMPE424) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Language Processors | CMPE424 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to provide necessary skills in developing a language processor as applied to compiler generation. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fundamental concepts of compilation and interpretation; single-pass and multiple-pass language translators; lexical analyzer; top-down parsing, and LL(1) grammars; recursive descent method; bottom-up parsing; shift reduce technique; operator precedence grammar, LR(0) and SLR(1) grammars; syntax directed translation; error processing and recovery; s |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Compiling | Chapter 1 (main text) |
2 | A Simple One-Pass Compiler | Chapter 2 |
3 | Lexical Analysis | Chapter 3 |
4 | Syntax Analysis | Chapter 4 |
5 | Syntax Directed Translation | Chapter 5 |
6 | Syntax Directed Translation | Chapter 5 |
7 | Type Checking | Chapter 6 |
8 | Run-time Environments | Chapter 7 |
9 | Run-time Environments | Chapter 7 |
10 | Run-time Environments | Chapter 7 |
11 | Intermediate Code Generation | Chapter 8 |
12 | Code Generation | Chapter 9 |
13 | Code Generation | Chapter 9 |
14 | Code Optimization | Chapter 10 |
Sources
Course Book | 1. Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools (2nd Edition), 2006, ISBN: 0321486811. (Dragon Book) |
---|---|
Other Sources | 2. 1. Steven Muchnick, Advanced Compiler Design and Implementation, 1997, Morgan Kaufmann Publishers, ISBN:1-55860-320-4. |
3. 2. Doug Brown, John Levine, Tony Mason, UNIX Programming Tools: Lex & Yacc, O’Reilly, 1992. | |
4. 3. Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen Langendoen VU University Amsterdam, Amsterdam, The Netherlands. John Wiley & Sons, Ltd., pp. 736 + xviii; ISBN 0471976970, 2000. | |
5. 4. http://dinosaur.compilertools.net/yacc/. | |
6. 5. Andrew W. Appel, Jens Palsberg, “Modern Compiler Implementation in Java (2nd edition)”, Cambridge Univ. Press, ISBN-13: 9780521820608, 2002. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 15 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 25 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 5 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Adequate knowledge in mathematics, science and subjects specific to the computer engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | X | ||||
2 | The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. | X | ||||
3 | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. | X | ||||
4 | The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in computer engineering applications; the ability to utilize information technologies effectively. | X | ||||
5 | The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the computer engineering discipline. | |||||
6 | The ability to work effectively in inter/inner disciplinary teams; ability to work individually | X | ||||
7 | Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. | |||||
8 | The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. | |||||
9 | Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology. | |||||
10 | The ability to behave according to ethical principles, awareness of professional and ethical responsibility; | |||||
11 | Knowledge of the standards utilized in software engineering applications | |||||
12 | Knowledge on business practices such as project management, risk management and change management; | |||||
13 | Awareness about entrepreneurship, innovation | |||||
14 | Knowledge on sustainable development | |||||
15 | Knowledge on the effects of computer engineering applications on the universal and social dimensions of health, environment and safety; | |||||
16 | Awareness of the legal consequences of engineering solutions | |||||
17 | An ability to describe, analyze and design digital computing and representation systems. | |||||
18 | An ability to use appropriate computer engineering concepts and programming languages in solving computing problems. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | 1 | 15 | 15 |
Report | |||
Homework Assignments | 2 | 5 | 10 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 130 |