ECTS - Computer Aided Analysis and Design in Structural Engineering
Computer Aided Analysis and Design in Structural Engineering (CE447) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Computer Aided Analysis and Design in Structural Engineering | CE447 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
CE321 ve CE342 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To understand concepts in structural analysis and design with the aid of a computer. To familiarize students on the state-of-the-art software and use the software in structural engineering applications. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction to Excel and Visual Basic, introduction to Excel and Visual Basic programming, programming in excel, design of reinforced concrete beams, design of reinforced concrete columns, deflection of reinforced concrete beams, design of steel beams, design of steel columns, introduction to SAP2000, use of Excel and SAP2000 simultaneously. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Excel | |
2 | Excel Basics | |
3 | Databases and Pivot Tables | |
4 | Programming in Excel | |
5 | Programming in Excel | |
6 | Userforms | |
7 | Analysis of Structures | |
8 | Analysis of Reinforced Concrete Beams | |
9 | Analysis of Reinforced Concrete Beams | |
10 | Design of Reinforced Concrete Columns | |
11 | Design of Reinforced Concrete Columns | |
12 | Use of Excel with Other Programs | |
13 | Use of Excel with Other Programs | |
14 | Use of Excel with Other Programs | |
15 | Final Exam Period | |
16 | Final Exam Period |
Sources
Other Sources | 1. Introduction to VBA for Excel, Steven C. Chapra, Prentice Hall, 2010. |
---|---|
2. Excel 2010 Power Programming with VBA, John Walkenbach, Wiley Publishing, 2010. | |
3. Excel for Scientists and Engineers, E. Joseph Billo, 2007. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 7 | 50 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 9 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Having accumulated knowledge on mathematics, science and engineering and an ability to apply these knowledge to solve Civil engineering problems. | X | ||||
2 | Ability to design Cİvil Engineering systems fulfilling sustainability in environment and manufacturability and economic constraints | X | ||||
3 | An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems. | |||||
4 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | |||||
5 | Ability to use modern engineering tools, techniques and facilities in design and other engineering applications | |||||
6 | Ability to carry out independent research in the field and to report the results of the research effectively and be able to present the research results at scientific meetings. | |||||
7 | Sufficient oral and written English knowledge to follow scientific conferences in the field and communicate with colleagues. | |||||
8 | Ability to effectively use knowledge in the field to work in disciplinary/multidisciplinary teams and the skill to lead these teams | |||||
9 | Consciousness on the necessity of improvement and sustainability as a result of life-long learning,ability for continuous renovation and monitoring the developments on science and technology and awareness on entrepreneurship and innovation | |||||
10 | Professional and ethical responsibility to gather and interpret data, apply and announce solutions to Civil Engineering problems. | |||||
11 | An ability to investigate, improve social connections and their conducting norms with a critical view and act to change them when necessary. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 7 | 5 | 35 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 150 |