ECTS - Advanced Structural Steel Design
Advanced Structural Steel Design (CE410) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Advanced Structural Steel Design | CE410 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
CE344 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The general objective of this course is to present the advanced topics in structural steel design in detail. These topics include behavior of built-up compression members, analysis and design of composite flexural members, and behavior of various seismic force resisting systems used in structural steel buildings. The students will also be introduced to the Load and Resistance Factor Design (LRFD) methodology through the use of North American design specifications, as well as the Turkish structural steel design standards. Emphasis will be given to the conceptual differences between the Load and Resistance Factor Design and the Allowable Stress Design methodologies. As a part of this course, the students will also be asked to do some computer programming for the solution of homework assignments. The students will also be asked to perform a literature survey on each topic that will be covered in this course, the results of which will be presented to the class in the form of a written report and an oral presentation. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | LRFD design of structural steel members, built-up compression members, composite flexural members, seismic design. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | LRFD Design of Structural Steel Members | |
2 | LRFD Design of Structural Steel Members | |
3 | LRFD Design of Structural Steel Members | |
4 | Built-Up Compression Members | |
5 | Built-Up Compression Members | |
6 | Built-Up Compression Members | |
7 | Composite Flexural Members | |
8 | Composite Flexural Members | |
9 | Composite Flexural Members | |
10 | Seismic Design Concepts | |
11 | Seismic Design Concepts / Seismic Specifications | |
12 | Seismic Specifications | |
13 | Seismic Behavior of Moment-Resisting Frames | |
14 | Seismic Behavior of Braced Frames, Seismic Behavior of Steel Plate Shear Wall Systems | |
15 | Final Exam Period | |
16 | Final Exam Period |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 40 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 20 |
Toplam | 8 | 100 |
Percentage of Semester Work | 80 |
---|---|
Percentage of Final Work | 20 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Having accumulated knowledge on mathematics, science and engineering and an ability to apply these knowledge to solve Civil engineering problems. | X | ||||
2 | Ability to design Cİvil Engineering systems fulfilling sustainability in environment and manufacturability and economic constraints | X | ||||
3 | An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems. | |||||
4 | An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment | |||||
5 | Ability to use modern engineering tools, techniques and facilities in design and other engineering applications | |||||
6 | Ability to carry out independent research in the field and to report the results of the research effectively and be able to present the research results at scientific meetings. | |||||
7 | Sufficient oral and written English knowledge to follow scientific conferences in the field and communicate with colleagues. | |||||
8 | Ability to effectively use knowledge in the field to work in disciplinary/multidisciplinary teams and the skill to lead these teams | |||||
9 | Consciousness on the necessity of improvement and sustainability as a result of life-long learning,ability for continuous renovation and monitoring the developments on science and technology and awareness on entrepreneurship and innovation | |||||
10 | Professional and ethical responsibility to gather and interpret data, apply and announce solutions to Civil Engineering problems. | |||||
11 | An ability to investigate, improve social connections and their conducting norms with a critical view and act to change them when necessary. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 4 | 20 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 150 |